Hostname: page-component-7bb8b95d7b-w7rtg Total loading time: 0 Render date: 2024-09-15T23:46:56.123Z Has data issue: false hasContentIssue false

TiO2:Ce/CeO2 High Performance Insulators For Thin Film Electroluminescent Devices

Published online by Cambridge University Press:  10 February 2011

A. R. Bally
Affiliation:
Institute of Applied Physics, EPFL, Lausanne, Switzerland, [email protected]
K. Prasad
Affiliation:
Institute of Applied Physics, EPFL, Lausanne, Switzerland, [email protected]
R. Sanjinés
Affiliation:
Institute of Applied Physics, EPFL, Lausanne, Switzerland, [email protected]
P. E. Schmid
Affiliation:
Institute of Applied Physics, EPFL, Lausanne, Switzerland, [email protected]
F. Lévy
Affiliation:
Institute of Applied Physics, EPFL, Lausanne, Switzerland, [email protected]
J. Benoit
Affiliation:
Laboratoire d'Acoustique et Optique de la Matière Condensée, Université P. et M. Curie, Paris, France, [email protected]
C. Barthou
Affiliation:
Laboratoire d'Acoustique et Optique de la Matière Condensée, Université P. et M. Curie, Paris, France, [email protected]
P. Benalloul
Affiliation:
Laboratoire d'Acoustique et Optique de la Matière Condensée, Université P. et M. Curie, Paris, France, [email protected]
Get access

Abstract

The electrical properties of titanium dioxide thin films have been stabilised by cerium doping. These films have a high permittivity between 35 to 45 and withstand 650°C. Multilayer TiO2:Ce/CeO2 insulators have been fabricated. The breakdown voltage is increased by a factor 10 with a modest decrease in the permittivity (30 – 35 instead of 35 – 45).

Electroluminescent devices (ELDs) with a classical ZnS:Mn phosphor have been prepared using TiO2:Ce as the first insulator and a TiO2:Ce/CeO2 multilayer as the second insulator. Compared with a standard ELD based on Y2O3 insulators, devices with the new insulators show a significant decrease of the threshold voltage along with a notable increase of the brightness. An important increase is also achieved in the total device efficiency which is maintained over a large range of brightness and transferred charge. Consequences of rapid thermal annealing and conventional thermal treatments on device performance have also been investigated.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Inoguchi, T., and Mito, S., Electroluminescence, Topics in Applied Physics 17, eds. Pankove, J. I. (Springer, New York, 1982), p. 197.Google Scholar
2. Howard, W. E., IEEE Trans. Electron Devices ED–24, 903 (1977).Google Scholar
3. Tiku, S. K. and Smith, G. C., IEEE Trans. Electron Devices ED–31, 105 (1984).Google Scholar
4. King, C. N., Society for Information Display (1985), Seminar Lecture Notes 4.1.Google Scholar
5. Fujita, Y., Kuwata, J., Nishikawa, M., Tohda, T., Matsuoka, T., Abe, A. and Nitta, T., Japan Display, 76 (1983).Google Scholar
6. Ono, Y., Electroluminescent Display, Series on information displays (World scientific Publication Co., London, 1995).Google Scholar
7. Xian, H., Benalloul, P., Barthou, C. and Benoit, B.: Jpn. J. Appl. Phys. 33 (1994) 5801.Google Scholar
8. Bergmann, H., Gmelin Handbuch der Anorganische Chemie, Seltenerdelement Teil Cl (Springer-Verlag, New York, 1974), p. 244.Google Scholar