Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-28T09:53:32.709Z Has data issue: false hasContentIssue false

A Tight-Binding Model for Optical Properties of Porous Silicon

Published online by Cambridge University Press:  10 February 2011

M. Cruz
Affiliation:
Escuela Superior de Ingeniería Mecánica y Eléctrica - UC, IPN, México.
M. R. Beltran
Affiliation:
Instituto de Investigaciones en Materiales, UN AM, Apdo. Postal 70–360, 04510, D.F. México.
C. Wang
Affiliation:
Instituto de Investigaciones en Materiales, UN AM, Apdo. Postal 70–360, 04510, D.F. México.
J. Tagüeña-Martinez
Affiliation:
Centro de Investigación en Energía, UN AM, A.P. 34, C.P. 62580, Temixco, Mor., México.
Get access

Abstract

Semi-empirical tight-binding techniques have been extensively used during the last six decades to study local and extended defects as well as aperiodic systems. In this work we propose a tight-binding model capable of describing optical properties of disordered porous materials in a novel way. Besides discussing the details of this approach, we apply it to study porous silicon (p-Si). For this purpose, we use an sp3s* basis set and supercells, where empty columns are digged in the [001] direction in crystalline silicon (c-Si). The disorder of the pores is considered through a random perturbative potential, which relaxes the wave vector selection rule, resulting in a significant enlargement of the optically active k-zone. The dielectric function and the light absorption spectra are calculated. The results are compared with experimental data showing a good agreement.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Cruz, M., Wang, C., Beltrán, M.R. and Tagüeña-Martínez, J., Phys. Rev. B 53, p. 3827 (1996).Google Scholar
[2] Canham, L.T., Appl. Phys. Lett. 57, p. 1046 (1990).Google Scholar
[3] Cullis, A.G., Canham, L.T. and Calcott, P.D.J., Appl. Phys. Rev. 82, p. 909, (1997).Google Scholar
[4] Delerue, C., Allan, G., and Lannoo, M., Phys. Rev. B 48, p. 11024 (1993);Google Scholar
Proot, J. P., Delerue, C., and Allan, G., Appl. Phys. Lett. 61, p. 1948 (1992).Google Scholar
[5] Buda, F., Kohanoff, J., and Parrinello, M., Phys. Rev. Lett, 69, p. 1272 (1992).Google Scholar
[6] Delley, B., and Steigmeier, E.F., Appl. Phys. Lett., 67, p. 2370 (1995).Google Scholar
[7] Delerue, C., Lannoo, M., Allan, G., Hill, N.A. and Whaley, K.B., Phys. Rev. Lett. 76, p. 3038 (1996).Google Scholar
[8] Sanders, G.D. and Chang, Y.C., Phys. Rev. B 45, p. 9202 (1992).Google Scholar
[9] Tsybeskov, L., et al., Light Emitting Porous Silicon: Materials Science Properties and Device Applications, IEEE, J. of Special Topics in Quantum Elect. 1, pp. 1126 (1995).Google Scholar
[10] Koshida, N., et al., Appl. Phys. Lett. 63, p. 2774 (1993).Google Scholar
[11] Sagnes, I., et al, Appl. Phys. Lett. 62, p. 1155 (1993).Google Scholar
[12] Tsybeskov, L., Duttagupa, S.P., Hirschman, K. D. and Fauchet, P., Appl. Phys. Lett. 68, p. 2058 (1996).Google Scholar
[13] Vogl, P., Hjalmarson, H.P., and Dow, J.D., J. Phys. Chem. Solids 44, p. 365 (1983).Google Scholar
[14] Harrison, W.A., Electronic Structure and the Properties of Solids (Dover, NY, 1989).Google Scholar
[15] Ren, Shang Yuan and Dow, John D., Phys. Rev. B 45, p. 6492 (1992).Google Scholar
[16] Huaxiang, Fu, Ling, Ye, and Xie, Xide, Phys. Rev. B 48, p. 10978 (1993).Google Scholar
[17] Brey, L. and Tejedor, C., Solid State Commun. 48, p. 403 (1983).Google Scholar
[18] Koiller, B., Osório, R., and Falicov, L.M., Phys. Rev. B 43, p. 4170 (1991).Google Scholar
[19] Derlet, P.M., Choy, T.C:, Stoneham, A.M., J. Phys.: Condens. Matter 7, p. 2507 (1995).Google Scholar
[20] Cruz, M., et al, Mat. Res. Soc. Symp. Proc. 452, p. 69 (1997).Google Scholar