No CrossRef data available.
Article contents
A Tight-Binding Model for Optical Properties of Porous Silicon
Published online by Cambridge University Press: 10 February 2011
Abstract
Semi-empirical tight-binding techniques have been extensively used during the last six decades to study local and extended defects as well as aperiodic systems. In this work we propose a tight-binding model capable of describing optical properties of disordered porous materials in a novel way. Besides discussing the details of this approach, we apply it to study porous silicon (p-Si). For this purpose, we use an sp3s* basis set and supercells, where empty columns are digged in the [001] direction in crystalline silicon (c-Si). The disorder of the pores is considered through a random perturbative potential, which relaxes the wave vector selection rule, resulting in a significant enlargement of the optically active k-zone. The dielectric function and the light absorption spectra are calculated. The results are compared with experimental data showing a good agreement.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 1998