Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-25T17:47:02.690Z Has data issue: false hasContentIssue false

Tight-binding Electron-ion Dynamics: A Method for treating nonadiabatic processes and Interactions with Electromagnetic Radiation

Published online by Cambridge University Press:  10 February 2011

J. S. Graves
Affiliation:
Department of Physics, Texas A&M University, College Station, Texas, 77843
R. E. Allen
Affiliation:
Department of Physics, Texas A&M University, College Station, Texas, 77843
Get access

Abstract

A method is introduced for simulations of the coupled dynamics of electrons and ions in a molecule or material. It is applicable to general nonadiabatic processes, including interactions with an arbitrarily intense radiation field. The field is included in the electronic Hamiltonian through a time-dependent Peierls substitution. The time-dependent Schrödinger equation is solved with an algorithm that preserves orthogonality, and the atomic forces are obtained from a generalized Ehrenfest theorem. Calculations for GaAs and Si demonstrate that the method is reliable and quantitative.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ferraudi, G. J., Elements of Inorganic Photochemistry (Wiley, New York, 1988).Google Scholar
2. Casey, F. A. and Sundberg, R. J., Advanced Organic Chemistry (Plenum, New York, 1993).Google Scholar
3. Dai, H.-L. and Ho, W., Laser Spectroscopy and Photochemistry on Metal Surfaces (World Scientific, Singapore, 1995), Vols. 1 and 2.Google Scholar
4. Kohen, E., Santus, R., and Hirschberg, J. G., Photobiology (Academic, Boston, 1995).Google Scholar
5. Mathews, C. K. and Van Holde, K. E., Biochemistry, second edition (Benjamin/ Cummings, Menlo Park, 1990).Google Scholar
6. Campbell, N. A., Biology, second edition (Benjamin/ Cummings, Menlo Park, 1990).Google Scholar
7. Joshi, C. J. and Corkum, P. B., Physics Today 48, 36 (1995).Google Scholar
8. Atoms in Intense Laser Fields, edited by Gommila, M. (Academic, Boston, 1992).Google Scholar
9. Molecules in Laser Fields, edited by Bandrank, A. D. (Marcel Dekker, New York, 1994).Google Scholar
10. Allen, R. E., Phys. Rev. B 50, 18629 (1994).Google Scholar
11. The Chemical Bond, Structure and Dynamics, edited by Zewail, A. (Academic, Boston, 1992).Google Scholar
12. Menon, M. and Allen, R. E., Phys. Rev. B 33, 7099 (1986).Google Scholar
13. de Shalit, A. and Feshbach, H., Theoretical Nuclear Physics (Wiley, New York, 1974), Vol. 1, p. 530.Google Scholar
14. Graf, M. and Vogl, P., Phys. Rev. B 51, 4940 (1995).Google Scholar
15. Sankey, O. F. and Allen, R. E., Phys. Rev. B 33, 7164 (1986).Google Scholar
16. Sawtarie, M., Menon, M., and Subbaswammy, K. R., Phys. Rev. B 49, 7739 (1994), and references therein.Google Scholar
17. Glezer, E. N., Siegal, Y., Huang, L., and Mazur, E., Phys. Rev. B 51, 6959, 9589 (1995).Google Scholar
18. Sokolowski-Tinten, K., Bialkowski, J., and von der Linde, D., Phys. Rev. B 51, 14186 (1995).Google Scholar
19. Govorkov, S. V., Schröder, Th., Shumay, I. L., and Heist, P., Phys. Rev. B 46, 6864 (1992).Google Scholar
20. Shank, C. V., Yen, R., and Hirlimann, C., Phys. Rev. Lett. 50, 454 (1983).Google Scholar
21. Vogl, P., Hjalmarson, H. P., and Dow, J. D., J. Phys. Chem. Solids 44, 365 (1983).Google Scholar
22. Harrison, W. A., Electronic Structure and the Properties of Solids (Freeman, San Francisco, 1980).Google Scholar
23. Aspnes, D. E. and Studna, A. A., Phys. Rev. B 27, 985 (1983).Google Scholar
24. Graves, J. S., Ph.D. thesis, Texas A&M University, 1997.Google Scholar