Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-27T01:31:06.989Z Has data issue: false hasContentIssue false

A Three Dimensional Self-folding Package (SFP) for Electronics

Published online by Cambridge University Press:  01 February 2011

David Gracias
Affiliation:
Jeong-Hyun Cho
Affiliation:
[email protected], Johns Hopkins University, Chemical and Biomolecular Engineering, 3400 N Charles Street, 125 Maryland Hall, Baltimore, Maryland, 21218, United States, 410-516-5284, 410-516-5510
Steve Hu
Affiliation:
[email protected], Johns Hopkins University, Chemical and Biomolecular Engineering, 3400 N Charles Street, 125 Maryland Hall, Baltimore, Maryland, 21218, United States, 410-516-5284, 410-516-5510
Get access

Abstract

We describe the concept of a 3D self-folding package (SFP) for sensors and electronic devices. The strategy is based on a self-assembly strategy wherein 2D panels interconnected with hinges spontaneously fold-up when they are released from the substrate; self-folding can be triggered by temperature or selected chemicals. The strategy enables packaging of devices in porous polyhedral geometries that can either be untethered or substrate-bound. Self-folding can enable packaging of devices in small 3D form factors and may enable efficient cooling due to porosity. The utilization of this self-folding platform to enable 3D packaging of cantilever sensors and magnetic field sensitive strain gauges is summarized.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Gimi, B. Leong, T. Gu, Z. Yang, M., Artemov, D. Bhujwalla, Z. M. Gracias, D. H. Biomed. Microdevices 7, 341 (2005).Google Scholar
2 Leong, T. Lester, P. Koh, T. Call, E. Gracias, D. H. Langmuir 23, 8747 (2007).Google Scholar
3 Cho, J. H. Gracias, D. H. Nanoletters 9 (12), 4049 (2009).Google Scholar
4 Leong, T. Zarafshar, A. Gracias, D. H. Small 6, 7, 792 (2010).Google Scholar
5 Filipiak, D. J. Azam, A. Leong, T. G. Gracias, D. H. J.Micromech. Microeng. 19, 075012 (2009).Google Scholar
6 Miller, L. F. IBM J. Res. Dev. 13 (3), 239 (1969).Google Scholar
7 Wale, M. J. Edge, C. Randle, F. A. Pedder, D. J. Proc.15th European Conf. Optical Communications, Gothenburg, Sweden, 1989, 368 (1989).Google Scholar
8 Syms, R. R. A. Yeatman, E. M. Electronics Lett. 29 (8), 662 (1993).Google Scholar
9 Randall, C. L. Kalinin, Y. Azam, A. Gracias, D. H. Mater. Res. Symp. Proc., Vol. 1272, San Francisco, CA, 2010.Google Scholar
10 Leong, T. G. Benson, B. R. Call, E. K. Gracias, D. H. Small 4, 1605 (2008).Google Scholar
11 Cho, J. H. Hu, S. Gracias, D. H. App. Phys. Lett. 93, 043505/1 (2008).Google Scholar
12 Randhawa, J. S. Gurbani, S. S. Keung, M. D. Demers, D. Leahy-Hoppa, M. R., Gracias, D. H. App. Phys. Lett. (2010) DOI:10.1063/1.3428657.Google Scholar
13 Gracias, D. H. Tien, J. Breen, T. L. Hsu, C. Whitesides, G. M. Science 289, 1170 (2000).Google Scholar