Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-23T13:48:02.675Z Has data issue: false hasContentIssue false

Thermodynamic Modeling of Island Size Distributions for InGaAs/GaAs Self Assembled Quantum Dots: A Quantitative Effort to Understand Ensemble Size Nonuniformity

Published online by Cambridge University Press:  01 February 2011

Jeff Cederberg
Affiliation:
[email protected], Sandia National Laboratories, Sandia National Laboratories, 1515 Eubank Blvd SE, MS 1086, Albuquerque, NM, 87123, United States, (505) 284-5456, (505) 284-5456
Alexana Roshko
Affiliation:
[email protected], NIST, Optoelectronics Divison, 326 Broadway, Boulder, CO, 80305, United States
Brit Hyland
Affiliation:
[email protected], NIST, Optoelectronics Divison, 326 Broadway, Boulder, CO, 80305, United States
Michael Coltrin
Affiliation:
[email protected], Sandia National Laboratory, 1515 Eubank Blvd SE, Albuquerque, NM, 87123, United States
Get access

Abstract

Experimental island count histograms as a function of SAQD volume have been evaluated using an established model. The experimental data was obtained for 51 mm wafers grown by MOCVD and analyzed over the center 26 × 26 mm square of the wafer with AFM. More than one distribution is required for all conditions investigated to obtain adequate representations of the experimental data. Consistent parameters are obtained for samples grown with a variable InAs thickness. Higher growth temperatures results in material being converted into relaxed islands. Extended annealing without AsH3 eliminates small islands, suggesting that they are not a stable distribution.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Bloch, J., Shah, J., Hobson, W.S., Lopata, J., Chu, S.N.G., Appl. Phys. Lett., 75, (1999), 2199Google Scholar
2. Ru, E.C. Le, Howe, P., Jones, T.S., Murray, R., Phys. Rev. B, 67, (2003), 165303.Google Scholar
3. Passaseo, A., et. al., Appl. Phys. Lett., 78, (2001), 1382.Google Scholar
4. Yuan, Z., et. al., Science, 295, (2002), 102 Google Scholar
5. Bhattacharya, P., et. al., Appl. Phys. Lett., 86, (2005), 191106.Google Scholar
6. Raghavan, S., et. al., Appl. Phys. Lett., 81, (2002), 1369.Google Scholar
7. Wasserman, D., Lyon, S.A., Appl. Phys. Lett., 81, (2002), 2848.Google Scholar
8. Johansson, J., Seifert, W., J. Crystal Growth, 234, (2002), 132.Google Scholar
9. Johansson, J., Seifert, W., J. Crystal Growth, 234, (2002), 139.Google Scholar
10. Kryzewski, T.J., Joyce, P.B., Bell, G.R., Jones, T.S., Phys. Rev. Lett., 66, (2002), 201302 Google Scholar
11. Yu, W.B., Madhukar, A., Phys. Rev. Lett., 79, (1997), 905.Google Scholar
12. Shchukin, V.A., et. al., Phys. Rev. Lett., 75, (1995), 2968.Google Scholar
13. Daruka, I., Barabási, A-L., Phys. Rev. Lett., 79, (1997), 3708.Google Scholar
14. Rudd, R.E., et. al., Phys. Rev. Lett., 90, (2003), 146101.Google Scholar
15. Cederberg, J.G., Kaatz, F.H., Biefeld, R.M., J. Crystal Growth, 261, (2004), 197.Google Scholar
16. Drucker, J., Phys. Rev. B, 48, (1993), 18203.Google Scholar