Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-25T17:59:51.612Z Has data issue: false hasContentIssue false

Theoretical and Experimental Investigations of the Growth of Silica and Titania Particles in Low Molecular Weight Alcohols

Published online by Cambridge University Press:  25 February 2011

Michael T. Harris
Affiliation:
Chemical Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831
Osman A. Basaran
Affiliation:
Chemical Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831
Charles H. Byers
Affiliation:
Chemical Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831
Get access

Abstract

Silica and titania particles are readily synthesized by the hydrolysis of alkoxides in various alcohols. The present research studies experimentally and models the chemistry and growth kinetics of silica and titania particles in low molecular weight alcohols (methanol, ethanol, 1-propanol, 1-butanol). The theoretical model is based on solving the hydrolysis and condensation kinetic expressions and applying the method of moments to expedite the solution of the governing population balance equation.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Iler, R. K., The Chemistry of Silica, (John Wiley and Sons, New York, 1988).Google Scholar
[2] Barringer, E. A. and Bowen, H. K., Langmuir, 1, 414 (1985).Google Scholar
[3] Matsoukas, T. and Gulari, E., J. Colloid Interface Sci., 124, 252 (1988).Google Scholar
[4] Bogush, G.H. and Zukoski, C. F., J. Colloid Interface Sci., 142, 19 (1991).Google Scholar
[5] Look, J. L., Bogush, G. H., and Zukoski, C. F., Faraday Discussion Chem. Soc, 90, 345 (1990).Google Scholar
[6] Bailey, J. K. and McCartney, M. L., Mat. Res. Soc. Symp. Proc, 180, 153 (1990).Google Scholar
[7] Bailey, J. K. and McCartney, M. L., in press.Google Scholar
[8] Stober, W., Fink, A. and Bohn, E., J. Colloid Interface Sci., 25, 62 (1968).CrossRefGoogle Scholar
[9] Tan, C. G., Bowen, B. D. and Epstein, N., J. Colloid Interface Sci., 118, 290 (1987).CrossRefGoogle Scholar
[10] Harris, M. T. and Byers, C. H., J. Non-cryst. Solids, 103, 49 (1988).Google Scholar
[11] Harris, M. T., Byers, C. H., and Brunson, R. R., Mat. Res. Soc. Symp. Proc, 121, 287 (1988).Google Scholar
[12] Harris, M. T., Brunson, R. R., and Byers, C. H., J. Non-cryst. Solids, 121, 397 (1990).CrossRefGoogle Scholar
[13] Nabavi, M., Doeuff, S., Sanchez, C., and Livage, J., J. Non-cryst. Solids, 121, 31 (1990).CrossRefGoogle Scholar
[14] Bradley, D. C., Mehrotra, R., and Gaur, D. P., Metal Alkoxides, (Academic Press, New York, 1978).Google Scholar
[15] Byers, C. H., Harris, M. T., and Williams, D. F., I&EC Res., 26 (9), 1916 (1987).Google Scholar
[16] Tremillon, , Chemistry of Nonaqueous Solvents, (Dreidel Publishing Company, Dordrecht, Holland, 1974).Google Scholar
[17] Feeney, P., Napper, D. H., Gilbert, R. G., Macromol., 17, 2520 (1984).Google Scholar
[18] Santacesaria, E., Tonello, M., Storti, G., Pace, R. C., and Carra, S., J. Colloid Interface Sci., 44, 111 (1986).Google Scholar