Published online by Cambridge University Press: 11 July 2011
The nanocrystalline ITO embedded Zr-doped HfO2 high-k dielectric thin film has been made into MOS capacitors for nonvolatile memory studies. The devices showed large charge storage densities, large memory windows, and long charge retention times. In this paper, authors investigated the temperature effect on the charge transport and reliability of this kind of device in the range of 25°C to 125°C. The memory window increased with the increase of the temperature. The temperature influenced the trap and detrap of not only the deeply-trapped but also the loosely-trapped charges. The device lost its charge retention capability with the increase of the temperature. The Schottky emission relationship fitted the device in the positive gate voltage region. However, the Frenkel-Poole mechanism was suitable in the negative gate voltage region.