Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-17T21:23:15.406Z Has data issue: false hasContentIssue false

Temperature dependent behavior of flat and bulk heterojunction organic solar cells

Published online by Cambridge University Press:  01 February 2013

Johannes Widmer*
Affiliation:
Institut für Angewandte Photophysik (IAPP), Technische Universität Dresden George-Bähr-Straße 1, 01062 Dresden, Germany
Karl Leo*
Affiliation:
Institut für Angewandte Photophysik (IAPP), Technische Universität Dresden George-Bähr-Straße 1, 01062 Dresden, Germany
Moritz Riede*
Affiliation:
Institut für Angewandte Photophysik (IAPP), Technische Universität Dresden George-Bähr-Straße 1, 01062 Dresden, Germany
Get access

Abstract

The open-circuit voltage of an organic solar cell is increasing with decreasing temperature and with increasing illumination intensity. These dependencies are quantitatively investigated for two types of organic solar cells, one with a flat donor-acceptor heterojunction and one with a mixed layer bulk heterojunction. Zinc-phthalocyanine and C60 are used as donor and acceptor, respectively. A qualitative difference is found for the two geometries. We find that a logarithmic illumination intensity dependence with temperature as a linear pre-factor of the logarithm, which is commonly reported and observed, is applicable for the bulk heterojunction. The flat heterojunction, in contrast, shows a constant illumination intensity pre-factor which is independent of the temperature, and the temperature can be modeled as additional linear summand.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Würfel, P., Physik der Solarzellen, 2. Auflage (Spektrum Akademischer Verlag, Heidelberg, 2000) p. 135. ISBN: 978-3-8274-0598-2 (English edition ISBN: 978-3-5274-0857-3).Google Scholar
Yamamoto, S., Orimo, A., Ohkita, H., Benten, H., Ito, S., Adv. Energy Mater., 2, 229 (2012). DOI: 10.1002/aenm.201100549 CrossRefGoogle Scholar
Vandewal, K., Tvingstedt, K., Gadisa, A., Inganäs, O., Manca, J. V., Phys. Rev. B, 81, 125204 (2010). DOI: 10.1103/PhysRevB.81.125204 CrossRefGoogle Scholar
Cheyns, D., Poortmans, J., Heremans, P., Deibel, C., Verlaak, S., Rand, B., Genoe, J., Phys. Rev. B, 77, 165332 (2008). DOI: 10.1103/PhysRevB.77.165332 CrossRefGoogle Scholar
Widmer, J., Tietze, M., Leo, K., Riede, M. (in preparation).Google Scholar
Li, F., Pfeiffer, M., Werner, A., Harada, K., Leo, K., Hayashi, N., Seki, K., Liu, X., Dang, X., J. Appl. Phys., 100, 023716 (2006). DOI: 10.1063/1.2219374 CrossRefGoogle Scholar
Tress, W., Leo, K., Riede, M. (in preparation)Google Scholar
Tietze, M. (private communication)Google Scholar
Zhao, W., Kahn, A., J. Appl. Phys., 105, 123711 (2009). DOI: 10.1063/1.3153962 CrossRefGoogle Scholar
Riede, M., Mueller, T., Tress, W., Schueppel, R., Leo, K., Nanotechnology, 19, 424001 (2008). DOI: 10.1088/0957-4484/19/42/424001 CrossRefGoogle Scholar