Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-27T03:21:33.006Z Has data issue: false hasContentIssue false

Systematic first principles calculations of the effects of stacking faults defects on the 4H-SiC band structure

Published online by Cambridge University Press:  01 February 2011

Massimo Camarda
Affiliation:
[email protected], Consiglio Nazionale delle Ricerche, Istituto di Microelettronica e Microsistemi, Catania, Italy
pietro delugas
Affiliation:
[email protected], SLACS-CNR-INFM (Sardinian Laboratory for Computational Materials Science), Cagliari, Italy
Andrea Canino
Affiliation:
[email protected], CNR-IMM, IMM, Z.I. VIII Strada 5 I, Catania, 95121, Italy
Andrea Severino
Affiliation:
[email protected], Consiglio Nazionale delle Ricerche, Istituto di Microelettronica e Microsistemi, Catania, Italy
nicolo piluso
Affiliation:
[email protected], Consiglio Nazionale delle Ricerche, Istituto di Microelettronica e Microsistemi, Catania, Italy
Antonino La Magna
Affiliation:
[email protected], United States
Francesco La Via
Affiliation:
[email protected], Consiglio Nazionale delle Ricerche, Istituto di Microelettronica e Microsistemi, Catania, Italy
Get access

Abstract

Shockley-type Stacking faults (SSF) in hexagonal Silicon Carbide polytypes have received considerable attention in recent years since it has been found that these defects are responsible for the degradation of forward I-V characteristics in p-i-n diodes. In order to extend the knowledge on these kind of defects and theoretically support experimental findings (specifically, photoluminescence spectral analysis), we have determined the Kohn-Sham electronic band structures, along the closed path Γ-M-K-Γ, using density functional theory. We have also determined the energies of the SSFs with respect to the perfect crystal finding that the (35) and (44) SSFs have unexpectedly low formation energies, for this reason we could expect these two defects to be easily generated/expanded either during the growth or post-growth process steps.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Lendenmann, H., Dahlquist, F., Johansson, N., Soderholm, R., Nilsson, P.A., Bergman, J.P., and Skytt, P., Mater. Sci. Forum 353 (2001), p.727 Google Scholar
2 Lendenmann, H., Dahlquist, F., Bergman, J.P., Bleichner, H. and Hallin, C., Mater. Sci. Forum 389 (2002), p.1259 Google Scholar
3 Feng, G., Suda, J. and Kimoto, T., Applied Physics Letters 92 (2008), p.221906 Google Scholar
4 Feng, G., Suda, J. and Kimoto, T., Applied Physics Letters 94 (2009), p.091910 Google Scholar
5 Miao, M.S., Limpijumnong, S. and Lambrecht, W.R.L., Applied Physics Letters 79 (2002), p.3033 Google Scholar
6 Izumi, S., Tsuchida, H., Kamata, I. and Izumi, K., Applied Physics Letters 86 (2005), p.202108 Google Scholar
7 Chung, H. J., Liu, J. Q., and Skowronski, M., Applied Physics Letters 81 (2002), p.3759 Google Scholar
8 Skromme, B.J., Palle, K., Poweleit, C.D., Bryant, L.R., Vetter, William M., Dudley, Michael, Moore, K., Gehoski, T., Mater. Sci. Forum 389 (2002), p.455 Google Scholar
9 Okojie, R. S., Ming, X., Pirouz, P., Tumakha, S., Jessen, G., and Brillson, L. J. Applied Physics letters 79 (2001), p.3056 Google Scholar
10 Choyke, W.J., Matsunami, H. and Pensl, G.Silicon Carbide”, ed. Springer, pag 89 Google Scholar
11 Camarda, M., Delugas, P., Magna, A. La and Via, F. La, submitted to Appl. Phys. Lett.Google Scholar