Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-17T17:23:04.586Z Has data issue: false hasContentIssue false

Synthesis of Barium Titanate by a Basic pH Pechini Process

Published online by Cambridge University Press:  25 February 2011

Suresh Kumar
Affiliation:
Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA.
Gary L. Messing
Affiliation:
Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA.
Get access

Abstract

Barium titanate powders and thin films have been processed by the conventional acid pH Pechini process and a modified basic pH Pechini process. Higher pH of the starting solution resulted in significantly finer grains in the sintered thin films. It is proposed that the microstructure refinement is due to the precipitates, formed only in the basic pH solution and resin.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Clabaugh, W. S., Swiggard, E. M., and Gilchrist, R., J. Res. Nati. Bur. Stn., R. P. 2677 56 (5), 289–91 (1956).Google Scholar
2 Flaschen, S. S., J. Am. Chem. Soc. 77, 6194 (1955).Google Scholar
3 Fukai, K., Hikada, K., Aoki, M., and Abe, K., Ceram. Int. 16, 285290 (1990).Google Scholar
4 Phule, P. P., and Risbud, S. H., J. Mat. Sci. 25, 1169–83 (1990).Google Scholar
5 Pechini, M. P., U. S. Patent No. 3,330,697 (July 11, 1967).Google Scholar
6 Eror, N. G. and Anderson, H. U. in Better Ceramics Through Chemistry II, ed. Brinker, C. J., Clark, D. E., and Ulrich, D. R. (Mater. Res. Soc. Symp. Proc. 73, Pittsburgh, PA 1986) pp. 571–78.Google Scholar
7 Mulder, B. J., Bull. Am. Ceram. Soc. 49 (11), 990–93 (1970).Google Scholar
8 Delmon, B. and Droguest, J. in Fine Particles, ed. Kuhn, W.E. and Ehretsmann, J. (Second Int. Conf., The Electrochem. Soc, Inc., NJ 1974) pp. 242–55.Google Scholar
9 Lessing, P. A., Bull. Am. Ceram. Soc. 68 (5), 1002–07 (1989).Google Scholar
10 Salze, H., Cales, B., and Odier, P., Mat. Sci. Mono. (High Tech. Ceram.) 38A 491–99 (1987).Google Scholar
11 Hennings, D., and Mayr, W., J. Solid State Chem., 26 329–38 (1978).CrossRefGoogle Scholar
12 Murthy, H. S. G., Rao, M. S., and Kutty, T. R. N., J. Inorg. Nucl. Chem., 37 891–98 (1975).Google Scholar
13 Schrey, F., J. Am. Ceram. Soc, 48 401–05 (1965).Google Scholar
14 Osseo-Asare, K., Amagada, F. J., and Adair, J. H. in Ceramic Powder Science II. A ed. Messing, G.L., Fuller, E.R. Jr, and Hausner, H. (Cer. Trans. 1, Am. Ceram. Soc, Inc., OH 1988) pp. 4753.Google Scholar