Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-17T18:18:49.854Z Has data issue: false hasContentIssue false

Surface Effects in the Mocvd of Copper

Published online by Cambridge University Press:  25 February 2011

G. M. Nuesca
Affiliation:
Center for Materials Characterization, University of North Texas, Denton, TX 76203
J. Prasad
Affiliation:
Center for Materials Characterization, University of North Texas, Denton, TX 76203
J. A. Kelber
Affiliation:
Center for Materials Characterization, University of North Texas, Denton, TX 76203
Get access

Abstract

Recent findings concerning the surface chemistry of Cu(I)) and Cu(II) betadiketonate precursors on metal and TiN surfaces are reviewed. Interactions of Cu(I) hexafluoroacetylacetonate (L) (Cu(I)(hfac)(L); L=Lewis base) with the surface result in an adsorbed Cu(I)hfac intermediate. Cu(II)(hfac)2 adsorbtion yields the Cu(I)hfac intermediate plus adsorbed hfac. Subsequent exposure to atomic hydrogen volatilizes the adsorbed hfac and results in the reduction of Cu(I) via disproportionation: 2Cu(I)(hfac) ⇒ Cu(0) + Cu(II)(hfac)2 (desorbed). These results demonstrate that disproportionation can occur on contaminant free surfaces under UHV conditions, and that the mechanisms for Cu(I) and Cu(II)/H2 film growth are similar. Implications for selectivity and low temperature deposition are explored. Potential shortcomings of TiN as an adhesion/diffusion barrier are also discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Pelletier, J., Pantel, R., Oberlin, J. C., Pauleau, Y. and Gouy-Pailler, P., J. Appl. Phys. 70, 3862 (1991).Google Scholar
2 Zheng, B., Eisenbraun, E. T., Liu, J. and Kaloyeros, A. E., Appl. Phys. Lett. 61, 2175 (1992).Google Scholar
3 Prasad, J., Nuesca, G.M. and Kelber, J. A., Appl. Surface Science 74, 115 (1994).CrossRefGoogle Scholar
4 Creighton, J. R. and Parmeter, J.E., Crit. Rev. in Solid State and Mater. Sciences 18, 175 (1993).Google Scholar
5 Girolami, G. S., Jeffries, P. M. and Dubois, L. H., J. Amer. Chem. Soc. 115, 1015 (1993).Google Scholar
6 Shin, H. K., Chi, K.M., Hain, A., Hampden-Smith, M. J., Kodas, T. T., Farkas, J., Paffet, M. F. and Farr, J. D., in Advanced Metallization for ULSI Applications. Rana, V. S., Joshi, R. V. and Ohdomari, I., Editors, (MRS, Pittsburgh) p. 403 (1992).Google Scholar
7 Shin, H. K., Chi, K. M., Hampden-Smith, M. J., Kodas, T. T., Farr, J. D. and Paffet, M., Chem. Mater. 4, 788 (1992).Google Scholar
8 Reynolds, S. K., Smart, C. J., Baran, E. F., Baum, T. H., Larson, C. E. and Brock, P. J., Appl. Phys. Lett. 59, 2332 (1991).Google Scholar
9 Dubois, L. H. and Zegarski, B. R., J. Electrochem. Soc. 139, 3296 (1992).Google Scholar
10 Cohen, S. L., Liehr, M. and Kasi, S., Appl. Phys. Lett. 60, 50 (1992).Google Scholar
11 Donnelly, V. M. and Gross, M. E., J. Vac. Sci. Technol. All, 66 (1993).Google Scholar
12 Cohen, S. L., Liehr, M. and Kasi, S., Appl. Phys. Lett. 60, 1585 (1992).CrossRefGoogle Scholar
13 Awaya, N. and Arita, Y., Proceedings of the VLSI Symposium( Kyoto, Japan) p. 103 (1989).Google Scholar
14 Lai, W. G., Xie, Y. and Griffin, G. L., J. Electrochem. Soc. 138, 3499 (1991).Google Scholar
15 D.H, Kim, Wentdorf, R. H. and Gill, W. N., J. Electrochem. Soc. 140, 3267 (1993).Google Scholar
16 Nuesca, G. M., Prasad, J. and Kelber, J. A. (submitted for publication).Google Scholar
17 Cho, C. C., in Proceedings of the 1990 Workship on Tungsten and Other Advanced Metals for ULSI Applications. Smith, G. C. and Blumenthal, R., editors (MRS; Pittsburgh) p. 189 (1991).Google Scholar
18 Kim, D. H., Wentorf, R. H. and Gill, W. N., J. Vac. Sci. Technol. A12, 153 (1994).Google Scholar
19 Jain, A., Kodas, T. T., R, Jairath and Hampden-Smith, M. J., J. Vac. Sci. Technol. Bll, 2107 (1993).Google Scholar
20 Jain, A., Farkas, J., Chi, K.M., Hampden-Smith, M. J. and Kodas, T. T., Appl. Phys. Lett. 61, 2662 (1992).Google Scholar
21 Chiang, CM., Miller, T. M. and Dubois, L. H., J. Phys. Chem. 97, 11781 (1993).CrossRefGoogle Scholar
22 Berger, H. F. and Rendulic, K. D., Surface Sci. 253, 325 (1991).Google Scholar
23 Gelatos, A. V., Marsh, R., Kottke, M. and Mogab, C. J., Appl. Phys. Lett. 63, 2842 (1993).Google Scholar
24 Guinn, K. V., Donnelly, V. M., Gross, M. E., Baiocchi, F. A., Petrov, I. and Greene, J. E., Surf. Sci. 295, 219 (1993).Google Scholar
25 Li, J., Shacham-Diamond, Y. and Mayer, J. W., Mat. Sci. Reports 9, 1 (1992).Google Scholar
26 Murarka, S. P. in Proceedings of the Sixth Annual Workshop on Tungsten and Other Advanced Metals for ULSI Applications. Smith, G. C. and Blumenthal, R., editors (MRS; Pittsburgh) p. 179 (1991).Google Scholar
27 Arcot, B., Murarka, S. P., Clevenger, L. A., Harper, J.M. E. and Cabrai, C. Jr., 9th International VLSI Multivlevel Interconnection Conference, Santa Clara, CA p.301 (1992).Google Scholar
28 Olowolafe, J., Mogab, C. J., Gregory, R. G. and Kottke, M., J. Appl. Phys. 72, 4099 (1992).Google Scholar
29 Olowolafe, J. O., Li, J., Mayer, J. W. and Colgan, E. G., Appl. Phys. Lett. 58, 295 (1991).Google Scholar
30 Hideaki, Kawamoto, Hiroyuki, Sakaue, Shinobu, Takeheiro and Yasuhiro, Horiike, Jap. J. Appl. Phys. 29, 2657 (1990).Google Scholar
31 Saha, N. C. and Tompkins, H. G., J. Appl. Phys. 72, 3072 (1992).Google Scholar
32 Peden, C. H. F., Kidd, K. B. and Shinn, N. D., J. Vac. Sci. Technol. A9, 1512 (1991).Google Scholar
33 Chamberlain, M. B., Thin Solid Films 91, 155 (1982).Google Scholar
34 Gelatos, G. ( private communication).Google Scholar
35 Kim, D. H., Wentorf, R. H. Jr. and Gill, W. N., J. Appl. Phys. 74, 5164 (1993).CrossRefGoogle Scholar
36 Perry, W. L., Chi, K. M., Kodas, T., Hampden-Smith, M. and Rye, R. R., Appl. Surf. Sci. 69, 94 (1993).Google Scholar
37 Hampden-Smith, M. J., Kodas, T. T. and Rye, R. R., Adv. Mater. 4, 524 (1992).CrossRefGoogle Scholar