Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-27T01:55:42.322Z Has data issue: false hasContentIssue false

The Supercell Scaling Investigation of Magnetic Properties in Ni-Mn-X (X=Ga, In, Sn, Sb) Heusler Alloys by Means of First-principles Methods

Published online by Cambridge University Press:  30 July 2013

Vasiliy Buchelnikov
Affiliation:
Condensed Matter Physics Department, Chelyabinsk State University, Chelyabinsk, 454001, Russian Federation.
Vladimir Sokolovskiy
Affiliation:
Condensed Matter Physics Department, Chelyabinsk State University, Chelyabinsk, 454001, Russian Federation. National University of Science and Technology “MISiS”, Moscow, 119049, Russian Federation.
Mikhail Zagrebin
Affiliation:
Condensed Matter Physics Department, Chelyabinsk State University, Chelyabinsk, 454001, Russian Federation.
Sergey Taskaev
Affiliation:
Condensed Matter Physics Department, Chelyabinsk State University, Chelyabinsk, 454001, Russian Federation.
Vladimir Khovaylo
Affiliation:
National University of Science and Technology “MISiS”, Moscow, 119049, Russian Federation.
Peter Entel
Affiliation:
Faculty of Physics and Center for Nanointegration, CENIDE, University of Duisburg-Essen, Duisburg, 47048, Germany.
Get access

Abstract

In this work we study the influence of supercell scaling on magnetic properties in Ni-Mn-X-Z alloys by means of ab initio calculations with the help of Quantum Espresso PWSCF package and the spin-polarized relativistic Korringa-Kohn-Rostoker (SPR-KKR) code based on DFT approximation. It is shown that the supercell calculations for the equilibrium lattice parameter are coincided with the calculations for simple primitive lattice. The exchange parameters for Ni-Mn-X alloys obtained from supercell calculations are large than calculated for simple primitive lattice.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Vasil'ev, A.N., Buchel'nikov, V.D., Takagi, T., Khovylo, V.V. and Estrin, E.I.. Phys. Uspekhi 46, 559 (2003).CrossRefGoogle Scholar
Planes, A., Manosa, L., and Acet, M., J. Phys.: Condens. Matter. 21, 233201 (2009).Google Scholar
Buchelnikov, V.D., and Sokolovskiy, V.V., Phys. Met. Metallogr. 112, 633 (2011).CrossRefGoogle Scholar
Sasioglu, E., Sandratskii, L.M., Bruno, P. Galanakis, I., Phys. Rev. B 72, 184415 (2005).CrossRefGoogle Scholar
Buchelnikov, V.D., Sokolovskiy, V.V., Herper, H.C., Ebert, H., Gruner, M.E., Taskaev, S.V., Khovaylo, V.V., Hucht, A., Dannenberg, A., Ogura, M., Akai, M., Acet, M., and Entel, P., Phys. Rev. B 81, 094411 (2010).CrossRefGoogle Scholar
Sokolovskiy, V.V., Buchelnikov, V.D., Zagrebin, M.A., Entel, P., Sahool, S. and Ogura, M., Phys. Rev. B 86, 134418 (2012).CrossRefGoogle Scholar
Ebert, H., Kodderitzsch, D. and Minar, J., Rep. Prog. Phys. 74, 096501 (2011).CrossRefGoogle Scholar
Ebert, H., SPR-KKR package Version 5.4 on http://ebert.cup.unimuenchen.de.Google Scholar
Perdew, J., Burke, K. and Ernzerhof, M., Phys. Rev. Lett 77, 3865 (1996).CrossRefGoogle Scholar
Broyden, C.G., Math. Comp., 19, 577 (1965).CrossRefGoogle Scholar
Vosko, S.H., Wilk, L., and Nusair, M., Can. J. Phys. 58, 1200 (1980).CrossRefGoogle Scholar
Liechtenstein, A.I., Katsnelson, M.I., Antropov, V.P., and Gubanov, V.A., J. of Magn. and Magn. Mater. 67, 65 (1987).CrossRefGoogle Scholar
Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P. Numerical Recipes in Fortran 77: The Art of Scientific Computing. Second Edition (Cambridge Univesity Press, Cambridge, 1992).Google Scholar
Brown, P.J., Gandy, A.P., Ishida, K., Kainuma, R., Kanomata, T., Neumann, K.-U., Oikawa, K., Ouladdiaf, B., and Ziebeck, K. R. A., J. Phys.: Condens. Matter 18, 2249 (2006).Google Scholar