Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-20T13:31:10.852Z Has data issue: false hasContentIssue false

Structure and Property Characterization of Porous Low-k Dielectric Constant Thin Films using X-ray Reflectivity and Small Angle Neutron Scattering

Published online by Cambridge University Press:  17 March 2011

Eric K. Lin
Affiliation:
Polymers Division, Materials Science and Engineering Laboratory, National Institute of Standards and Technology 100 Bureau Drive, Stop 8541, Gaithersburg, MD 20899-8541, USA
Wen-li Wu
Affiliation:
Polymers Division, Materials Science and Engineering Laboratory, National Institute of Standards and Technology 100 Bureau Drive, Stop 8541, Gaithersburg, MD 20899-8541, USA
Changming Jin
Affiliation:
SEMATECH 2706 Montopolis Drive, Austin, TX 78741-6499, USA
Jeffrey T. Wetzel
Affiliation:
SEMATECH 2706 Montopolis Drive, Austin, TX 78741-6499, USA
Get access

Abstract

High-resolution X-ray reflectivity and small angle neutron scattering measurements are used as complementary techniques to characterize the structure and properties of porous thin films for use as low-k interlevel dielectric (ILD) materials. With the addition of elemental composition information, the average pore size, porosity, pore connectivity, matrix density, average film density, film thickness, coefficient of thermal expansion, and moisture uptake of porous thin films are determined. Examples from different classes of materials and two analysis methods for small angle neutron scattering data are presented and discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Hrubesh, L. W., Keene, L. E., and Latorre, V. R., J. Mater. Res. 8, 1736 (1993).10.1557/JMR.1993.1736Google Scholar
2. Jin, C., Luttmer, J. D., Smith, D. M., and Ramos, T. A., MRS Bull. 22, 39 (1997).10.1557/S0883769400034187Google Scholar
3. Gidley, D. W., Frieze, W. E., Dull, T. L., Yee, A. F., Nguyen, C. V. and Yoon, D. Y., Appl. Phys. Lett., 76 (10), 1282 (2000).10.1063/1.126009Google Scholar
4. Dultsev, F. N. and Baklanov, M. H., Elec. Solid State Lett., 2, 192 (1999).10.1149/1.1390780Google Scholar
5. Wu, W. L., Wallace, W. E., Lin, E. K., Lynn, G. W., Glinka, C. J., Ryan, E. T. and Ho, H. M., J. Appl. Phys., 87, 1193 (2000).10.1063/1.371997Google Scholar
6. Lekner, J., Theory of Reflection (Nijhoff, Dordrecht, 1987).Google Scholar
7. Higgins, J. S. and Benoit, H. C., Polymers and Neutron Scattering (Oxford University Press, Oxford, 1994).Google Scholar
8. Debye, P., Anderson, H. R., and Brumberger, H., J. Appl. Phys. 28, 679 (1957).10.1063/1.1722830Google Scholar
9. Porod, G., Kolloidn Zh. 124, 83 (1951).10.1007/BF01512792Google Scholar
10. Wu, W. L., Lin, E. K., Jin, C., and Wetzel, J. T., In an accompanying paper in this session (2000).Google Scholar