Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-25T18:03:22.107Z Has data issue: false hasContentIssue false

Structural Characterization of GaN Grown By Electron Cyclotron Resonance-Metalorganic Molecular Beam Epitaxy (ECR-MOMBE)

Published online by Cambridge University Press:  21 February 2011

S. Bharatan
Affiliation:
University of Florida, Gainesville, FL, 32611
K. S. Jones
Affiliation:
University of Florida, Gainesville, FL, 32611
S. J. Pearton
Affiliation:
University of Florida, Gainesville, FL, 32611
C. R. Abernathy
Affiliation:
University of Florida, Gainesville, FL, 32611
F. Ren
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
Get access

Abstract

Electron cyclotron resonance-metalorganic molecular beam epitaxy (ECR-MOMBE) has been used to deposit cubic and hexagonal gallium nitride (GaN) on various substrates, namely GaAs, ZnO and Al2O3. This paper will report on the effect of the growth rate of the GaN layer on the surface morphology, as analyzed using scanning electron microscopy (SEM). Structural characterization of this material was conducted using cross-sectional transmission electron microscopy (XTEM) and x-ray diffraction. Conditions such as pre-deposition annealing, growth rate and growth temperature are critical in determining the phase and crystallinity of the deposited layers. These parameters were optimized to obtain the cubic GaN phase on GaAs substrates and single crystal wurtzitic GaN on ZnO and Al2O3 substrates.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Davis, R. F., Proceedings of the IEEE, Vol.79, 702 (1992).Google Scholar
2. Strite, S. and Morkoc, H., Journal of Vacuum Science and Technology B 10, 1237 (1992).Google Scholar
3. Strite, S., Lin, M. E. and Morkoç, H., Thin Solid Films 231, 197 (1993).Google Scholar
4. Abernathy, C. R., Journal of Vacuum Science and Technology A 11, 869 (1993).Google Scholar
5. Wisk, P. W., Abernathy, C. R., Pearton, S. J., Ren, F., Lothian, J. R., Katz, A. and Jones, K. in Chemical Perspectives of Microelectronic Materials III, edited by Abernathy, C.R., Bates, C.W., Bohling, D.A. and Hobson, W.S. (Mater. Res. Soc. Proc. 282, Boston, MA, 1992) pp. 599604.Google Scholar
6. Bharatan, S., Jones, K. S., Abernathy, C. R., Pearton, S. J., Ren, F., Wisk, P. W. and Lothian, J. R., Journal of Vacuum Science and Technology, in press.Google Scholar
7. Born, P. J. and Robertson, D. S., Journal of Materials Science 15, 3003 (1980).Google Scholar
8. Sitar, Z., Paisley, M. J., Yan, B. and Davis, R. F. in Diamond, Silicon Carbide and Related Wide Bandgap Semiconductors, edited by Glass, J.T., Messier, R.F. and Fujimori, N. (Mater. Res. Soc. Proc. 162, Boston, MA, 1989) pp. 537541.Google Scholar
9. Lei, T., Moustakas, T. D., Graham, R. J., He, Y. and Berkowitz, S. J., Journal of Applied Physics 71, 4933 (1992).Google Scholar
10. He, Z. Q., Ding, X. M., Hou, X. Y. and Wang, X., Applied Physics Letters 64, 315 (1994).Google Scholar
11. Takeuchi, T., Amano, H., Hiramatsu, K., Sawaki, N. and Akasaki, I., Journal of Crystal Growth 115, 634 (1991).Google Scholar
12. Powell, R. C., Tomasch, G. A., Kim, Y.-W., Thornton, J. A. and Greene, J. E. in Diamond, Silicon Carbide and Related Wide Bandgap Semiconductors, edited by Glass, J.T., Messier, R.F. and Fujimori, N. (Mater. Res. Soc. Proc. 162, Boston, MA, 1989) pp. 525530.Google Scholar
13. Kuwano, N., Shiraishi, T., Koga, A., Oki, K., Hiramatsu, K., Amano, H., Itoh, S. and Akasaki, I., Journal of Crystal Growth 115, 381 (1991).Google Scholar
14. Moustakas, T. D., Molnar, R. J., Lei, T., Menon, G. and Eddy, C. R. Jr in Wide Bandgap Semiconductors, edited by Moustakas, T.D., Pankove, J.I. and Hamakawa, Y. (Mater. Res. Soc. Proc. 242, Boston, MA, 1991) pp. 427432.Google Scholar
15. Maruska, H. P. and Tietjen, J. J., Applied Physics Letters 15, 327 (1969).Google Scholar
16. Summerville, M. K. and Posthill, J. B., Journal of Electron Microscopy Technique 12, 56 (1989).Google Scholar
17. Strite, S., Ruan, J., Li, Z., Salvador, A., Chen, H., Smith, D. J., Choyke, W. J. and Morkoç, H., Journal of Vacuum Science and Technology B 9, 1924 (1991).Google Scholar
18. Fujieda, S. and Matsumoto, Y., Japanese Journal of Applied Physics 30, L1665 (1991).Google Scholar