Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-25T17:39:21.208Z Has data issue: false hasContentIssue false

Stress and Phase Transformation Phenomena in Oxide Films: Real-Time Spectroscopic Measurements

Published online by Cambridge University Press:  25 February 2011

Gregory J. Exarhos
Affiliation:
Pacific Northwest Laboratory, Richland, Washington 99352
Nancy J. Hess
Affiliation:
Pacific Northwest Laboratory, Richland, Washington 99352
Get access

Abstract

In situ optical methods are reviewed for characterization of phase transformation processes and evaluation of residual stress in solution-deposited metastable oxide films. Such low density films most often are deposited as disordered phases making them prone to crystallization and attendant densification when subjected to increased temperature and/or applied pressure. Inherent stress imparted during film deposition and its evolution during the transformation are evaluated from phonon frequency shifts seen in Raman spectra (TiO2) or from changes in the laser-induced fluorescence emission spectra for films containing rare earth (Sm+3:Y3Al5O12) or transition metal (Cr+3 :Al2O3) dopants. The data in combination with measured increases in line intensities intrinsic to the evolving phase are used to follow crystallization processes in thin films. In general, film deposition parameters are found to influence the crystallite ingrowth kinetics and the magnitude of stress and stress relaxation in the film during the transformation. The utility of these methods to probe crystallization phenomena in oxide films will be addressed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Weber, A. J., Stewart, A. F., Exarhos, G. J., and Stowell, W. K. in Laser Induced Damage in Optical Materials: 1986, NIST Special Publication 752, ed. Bennett, H. E., Guenther, A. H., Milam, D., and Newnam, B. E. (U. S. Dept. Commerce, Washington, DC) pp. 542556 (1988).CrossRefGoogle Scholar
[2] Pond, B. J., DeBar, J. I., Carniglia, C. K., and Raj, T. in Laser Induced Damage in Optical Materials: 1988, NIST Special Publication 775, ed. Bennett, H. E., Guenther, A. H., Newnam, B. E., and Soileau, M. J. (U. S. Dept. Commerce, Washington, DC) pp. 311319 (1989).Google Scholar
[3] Exarhos, G. J. and Crosby, K. M., Proc. Soc. Photo-opt. Instrumen. Eng. 1438:324 (1990).Google Scholar
[4] Rickerby, D. S., Bellamy, B. A., and Jones, A. M., Surf. Eng. 3:138 (1987).CrossRefGoogle Scholar
[5] Williams, F. L., Jacobson, R. D., McNeil, J. R., McNally, J. J. and Exarhos, G. J., J. Vac. Sci. Tech. A6 (3): 2020 (1988).CrossRefGoogle Scholar
[6] Guglielmi, M., Scarinci, G., Maliavski, N., Bertoluzza, A., Fagnano, C., and Morelli, M. A., J. Non. Crys. Sol. 100:292 (1988).CrossRefGoogle Scholar
[7] Frydrych, W. S., Ferris, K. F., and Exarhos, G. J. in Atomic and Molecular Processing of Electronic and Ceramic Materials, ed. Aksay, I. A., McVay, G. L., and Stobe, T. G., (Mat. Res. Soc. Pittsburgh) pp. 147 (1988).Google Scholar
[8] Thomas, I. M., Optics News 1986 (7): 18 (1986).Google Scholar
[9] Sakka, S., Ceram. Bull. 64 (11): 1463 (1985).Google Scholar
[10] Assih, T., Ayral, A., Abenoza, M., and Phalippou, J., J. Mat. Sci. 23:3326 (1988).CrossRefGoogle Scholar
[11] Pederson, L.R., Chick, L. A., and Exarhos, G. J., U. S. Patent #4, 880, 772 (1989).Google Scholar
[12] Drum, C. M. and Rãnd, M. J., J. Appl. Phys. 39:4458 (1968).CrossRefGoogle Scholar
[13] Finegan, J. D. and Hoffman, R. W., J. Appl. Phys. 30:597 (1959).CrossRefGoogle Scholar
[14] Haworth, B., Hindle, C. S., Sandilands, G. J., and White, J. R., Plas. Rubber Process. Appl. 2:59 (1982).Google Scholar
[15] Ramsey, P. M., Chandler, H. W., and Page, T. F., Thin Solid Films 193/194:223 (1990).Google Scholar
[16] Behnken, H. and Hauk, V., Thin Solid Films 193/194:333 (1990).CrossRefGoogle Scholar
[17] Perry, A. J., Jagner, M., Woerner, P. F., Sproul, W. D., and Rudnik, P. J., Thin Solid Films 43/44:234 (1990).Google Scholar
[18] Ma, D. I., Qadri, S. B., Peckerar, M. C., and McCarthy, D., Thin Solid Films 206:18 (1991).CrossRefGoogle Scholar
[19] Exarhos, G. J. and Friedrich, D. M., Microbeam Analysis 1987:147 (1987).Google Scholar
[20] Nishioka, T., Shinoda, Y., and Ohmachi, Y., J. Appl. Phys. 57 (2): 276 (1985).CrossRefGoogle Scholar
[21] Kubota, K., Nakayama, M., Katoh, H., and Sano, N., Solid State Commun. 49(2): 157 (1984).CrossRefGoogle Scholar
[22] Hess, N. J. and Exarhos, G. J., Proc. Soc. Photo-opt. Instrumen. Eng. 1055:194 (1989).Google Scholar
[23] Yamazaki, K., Yamada, M., and Yamamoto, K., Jpn. J. Appl. Phys. Pt. 1 23 (6): 681 (1984).CrossRefGoogle Scholar
[24] Stern, M. B., Harrison, T. R., Archer, V. D., Liao, P. F., and Bean, J. C., Sol. St. Comm. 51 (4): 221 (1984).CrossRefGoogle Scholar
[25] Exarhos, G. J., and Risen, W. M. Jr, J. Am. Ceram. Soc. 57 (9): 401 (1974).CrossRefGoogle Scholar
[26] Barnett, J. D., Block, S., and Piermarini, G. J., Rev. Sci. Instr. 44:1 (1973).CrossRefGoogle Scholar
[27] Hess, N. J. and Exarhos, G. J., High Press. Res. 2:57 (1989).CrossRefGoogle Scholar
[28] Frydrych, W. S., Exarhos, G. J., Ferris, K. F., and Hess, N. J., Proc. Mat. Res. Soc. 121:343 (1988).CrossRefGoogle Scholar
[29] Grattan, K. T. V., Selli, R. K., and Palmer, A. W., Rev. Sci. Instrumen. 59 (8): 1328 (1988).CrossRefGoogle Scholar
[30] Bruesch, P. in Phonons: Theory and Experiments I. Lattice Dynamics and Models of Interatomic Forces, Springer Ser. in Sol. St. Sci. 34, ed. Fulde, P. (Springer, Berlin) pp. 152 ff (1982).Google Scholar
[31] Exarhos, G. J. and Schaaf, J. W., J. Appl. Phys. 69 (4): 2543 (1991).CrossRefGoogle Scholar
[32] Exarhos, G. J. and Schaaf, J. W., Proc. Soc. Photo-opt. Instrumen. Eng. 1055:185 (1989).Google Scholar
[33] Sherman, W. F., Bull. Soc. Chimique 9/10:1347 (1982).Google Scholar
[34] Exarhos, G. J. and Aloi, M., Thin Solid Films 193/194:42 (1990).CrossRefGoogle Scholar
[35] Avrami, M., J. Chem. Phys. 7 (12): 1103 (1939); 8 (2): 212 (1940); 9 (2): 177 (1941).CrossRefGoogle Scholar
[36] Hess, N. J. and Schiferl, D., J. Appl. Phys. 71 (5): 2082 (1992).CrossRefGoogle Scholar