Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-27T01:51:11.982Z Has data issue: false hasContentIssue false

The Strain Status of the Buried Self-assembled InAs quantum dots using MeV technique

Published online by Cambridge University Press:  01 February 2011

Hsing-Yeh Wang
Affiliation:
[email protected], National Chiao Tung University, Electronics Engineering, 1001 Ta Hsueh Road, Hsinchu, N/A, 30043, Taiwan
C.H. Chen
Affiliation:
[email protected], National Tsing Hua University, Physics, Hsinchu, N/A, 30043, Taiwan
H. Niu
Affiliation:
[email protected], Nuclear Science and Technology Development Center, National Tsing Hua University, Hsinchu, N/A, 30043, Taiwan
S.C. Wu
Affiliation:
[email protected], National Tsing Hua University, Physics, Hsinchu, N/A, 30043, Taiwan
C.P. Lee
Affiliation:
[email protected], National Chiao Tung University, Electronics Engineering, 1001 Ta Hsueh Road, Hsinchu, N/A, 30043, Taiwan
Get access

Abstract

The strain status of the buried InAs self-assembled quantum dot was comprehended by measurement first time. Results show the in-plane strain is compressive and lattice in the growth direction is lager than the lattice of GaAs. The strain of the sample annealed at 650 degree relaxes in the growth direction. The growth and the lateral direction become relaxed in the sample annealed at 750 degree.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Park, G., Shchekin, O. B., Huffaker, D. L., and Deppe, D. G., Appl. Phys. Lett. 73, 3351 (1998).Google Scholar
2 Arakawa, Y., and Sakaki, H., Appl. Phys. Lett. 40, 939 (1982).Google Scholar
3 Ledentsov, N. N., Shchukin, V. A., Grundmann, M., Kirstaedter, N., Böhrer, J., Schmidt, O., Bimberg, D., Ustinov, V. M., Egorov, A. Yu., Zhukov, A. E., Kop'ev, P. S., Zaitsev, S. V., Gordeev, N. Yu., Alferov, Zh. I., Borovkov, A. I., Kosogov, A. O., Ruvimov, S. S., Werner, P., Gosele, U., and Heydenreich, J., Phys. Rev. B 54, 8743 (1996).Google Scholar
4 Pan, D., Towe, E., and Kennerly, S., Appl. Phys. Lett. 73, 1937 (1998).Google Scholar
5 Wang, S.Y., Lin, S.D., Wu, H. W., and Lee, C. P., Appl. Phys. Lett. 78, 1023 (2001).Google Scholar
6 Darhuber, A. A., Holy, V., Stangl, J., Bauer, G., Krost, A., Heinrichsdorff, F., Grundmann, M., Bimberg, D., Ustinov, V. M., Kopev, P. S., Kosogov, A. O., and Werner, P., Appl. Phys. Lett. 70, 955 (1997).Google Scholar
7 Grundmann, M., Stier, O., and Bimberg, D., Phys. Rev. B 52, 11969 (1995).Google Scholar
8 Krost, A., Heinrichsdorff, F., Bimberg, D., Darhuber, A. and Bauer, G., Appl. Phys. Lett. 68, 785 (1996).Google Scholar
9 Zhang, K., Heyn, Ch., Hansen, W. Schmidt, Th. and Falta, J., Appl. Phys. Lett. 77, 1295 (2000)Google Scholar
10 Lee, H. S., Lee, J. Y., Kim, T. W., and Kim, M. D., Appl. Phys. Lett. 83, 2256 (2003)Google Scholar
11 Selen, L. J. M., IJzendoorn, L. J. van, Voigt, M. J. A. de, and Koenraad, P. M., Phys. Rev. B 61, 8270 (1998)Google Scholar
12 Feldman, L. C., Mayer, J. W., and Picraux, S. T., Materials Analysis by Ion Channeling, Academic Press 1982.Google Scholar