Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-29T07:49:34.996Z Has data issue: false hasContentIssue false

Stability of Nitrogen and Hydrogen in High-k Dielectrics

Published online by Cambridge University Press:  01 February 2011

K.P. Bastos
Affiliation:
Instituto de Física - UFRGS, CP 15051 Porto Alegre 91501–970, Brazil
R.P. Pezzi
Affiliation:
Instituto de Física - UFRGS, CP 15051 Porto Alegre 91501–970, Brazil
L. Miotti
Affiliation:
Instituto de Física - UFRGS, CP 15051 Porto Alegre 91501–970, Brazil
G.V. Soares
Affiliation:
Instituto de Física - UFRGS, CP 15051 Porto Alegre 91501–970, Brazil
C. Driemeier
Affiliation:
Instituto de Física - UFRGS, CP 15051 Porto Alegre 91501–970, Brazil
J. Morais
Affiliation:
Instituto de Física - UFRGS, CP 15051 Porto Alegre 91501–970, Brazil
I.J.R. Baumvol
Affiliation:
Centro de Ciencias Exatas e Tecnologicas - UCS, Av. Francisco G. Vargas 1130, 95070–560 Caxias do Sul, Brazil
Get access

Abstract

We report here on atomic transport, thermal stability, and chemical evolution of HfSiO, HfSiN, and AlON films on Si(001), aiming at investigating the atomic scale behaviour of the involved chemical species, N and H in particular, when the films are submitted to usual thermal processing steps in inert and oxidizing atmospheres. The films were characterized by nuclear reaction analyses in resonant and non-resonant regions of the cross-section curves, X-ray photoelectron spectroscopy, and low energy ion scattering. The HfSiN/Si structure was shown to be more resistant to oxygen diffusion than HfSiO/Si, although the amounts of O incorporated in HfSiN/Si are larger than in HfSiO/Si. The main channel of oxygen incorporation is atomic exchange with nitrogen or oxygen atoms. HfSiN film on Si incorporate more hydrogen (or deuterium) and in more stable configurations than HfSiO/Si. Nitrogen incorporation into AlON films on Si renders this structure more stable against thermal annealing in vacuum and/or oxidizing atmospheres than Al2O3/Si.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kingon, A., Maria, J.-P., and Streiffer, S.K., Nature 406, 1032 (2000).Google Scholar
2. Wilk, G.D., Wallace, R.M., Anthony, J.M., Applied Physics Review, J. App. Phys. 89, 5243 (2001).Google Scholar
3. Visokay, M.R., Chambers, J.J., Rotondaro, A.L.P., Shanware, A., and Colombo, L., Appl. Phys. Lett. 80, 3183 (2002).Google Scholar
4. Koyama, M., Kaneko, A., Ino, T., Koike, M., Kamata, Y., Ijima, R., Kamimuta, Y., Takashima, A., Suzuki, M., Hongo, C., Inumiya, S., Takayanagi, M., and Nishiyama, A., Tech. Dig. – Int. Electron Devices Meet. 2002, 849852 (2002).Google Scholar
5. Akbar, M.S., Gopalan, S., Cho, H.-J., Onishi, K., Choi, R., Nieh, R., Kang, C.S., Kim, Y.H., Han, J., Krishnan, S., and Lee, J.C., Appl. Phys. Lett. 82, 1757 (2003).Google Scholar
6. Quevedo-Lopez, M., El-Bouanani, M., Kim, M.J., Gnade, B.E., Wallace, R.M., Visokay, M.R., LiFatou, A., Chambers, J.J., and Colombo, L., Appl. Phys. Lett. 82, 4669 (2003).Google Scholar
7. Hinkle, C. and Lucovsky, G., App. Surf. Sci. 216, 124 (2003).Google Scholar
8. Lyding, J.W., Hess, K., and Kiziyalli, I., Appl. Phys. Lett. 68, 2526 (1996).Google Scholar
9. Sim, H. and Hwang, H., Appl. Phys. Lett. 81, 4038 (2002).Google Scholar
10. Baumvol, I.J.R., Surf. Sci. Rep. 36, 1 (1999).Google Scholar
11. de Almeida, R.M.C. and Baumvol, I.J.R., Surf. Sci. Rep. 49, 1 (2003).Google Scholar
12. Baumvol, I.J.R., Stedile, F. C., Radtke, C., Freire, F. L. Jr, Gusev, E., Green, M. L., and Brasen, D., Nucl. Instrum. Meth. B136–138, 204 (1998).Google Scholar
13. da Rosa, E. B. O., Krug, C., Stedile, F. C., Morais, J. and Baumvol, I. J. R., Nucl. Instrum. Meth B190, 538 (2002).Google Scholar
14. Wilde, M., Matsumoto, M., Fukutani, K., Liu, Z., Ando, K., Kawashima, Y., and Fujieda, S., J. Appl. Phys. 92, 4320 (2002).Google Scholar
15. Krauser, J., Weidinger, A., Bräuning, D., in: Massoud, H. Z., Poindexter, E.H., Helms, C. R. (Eds.), The Physics and Chemistry of SiO2 and Si-SiO2 Interface-3, vol. 96 (1), The Electrochemical Society, Pennington, 1996, p. 184.Google Scholar
16. Cho, M., Park, J., Park, H.B., Hwang, C.S., Jeong, J., Hyun, K.S., Kim, Y.-W., Oh, C.-B., and Kang, H.-S., Appl. Phys. Lett. 82, 1757 (2003).Google Scholar
17. Gusev, E. P., Copel, M., Cartier, E., Baumvol, I. J. R., Krug, C., Gribelyuk, M. A., Appl. Phys. Lett. 76, 176 (2000).Google Scholar
18. Krug, C., da Rosa, E.B.O., de Almeida, R.M.C., Morais, J., Baumvol, I.J.R., Salgado, T.D.M., and Stedile, F.C., Phys. Rev. Lett. 85, 4120 (2000).Google Scholar
19. Guha, S., Gusev, E.P., Okorn-Schmidt, H., Copel, M., Ragnarsson, L.-A., and Ronsheim, P., Appl. Phys. Lett. 81, 2956 (2002).Google Scholar
20. Copel, M., Phys. Rev. Lett. 86 (2001) 4713.Google Scholar
21. da Rosa, E.B.O., Baumvol, I.J.R., Morais, J., de Almeida, R.M.C., Papaleo, R.M., and Stedile, F.C., Phys. Rev B86, 12130 (2002).Google Scholar
22. Katnani, A.D. and Papathomas, K.I., J. Vac. Sci. Technol. A5, 1335 (1987).Google Scholar
23. Taylor, J.A. and Rabalais, J.W., J. Chem. Phys. 75, 1735 (1981).Google Scholar