Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-25T17:54:58.925Z Has data issue: false hasContentIssue false

Stability Improvement of Nickel Silicide with Co Interlayer on Si, Polysilicon and SiGe

Published online by Cambridge University Press:  21 March 2011

Jer-shen Maa
Affiliation:
Sharp Laboratories of America, 5700 NW Pacific Rim Blvd. Camas, WA 98607
Douglas J. Tweet
Affiliation:
Sharp Laboratories of America, 5700 NW Pacific Rim Blvd. Camas, WA 98607
Yoshi Ono
Affiliation:
Sharp Laboratories of America, 5700 NW Pacific Rim Blvd. Camas, WA 98607
Lisa Stecker
Affiliation:
Sharp Laboratories of America, 5700 NW Pacific Rim Blvd. Camas, WA 98607
Sheng Teng Hsu
Affiliation:
Sharp Laboratories of America, 5700 NW Pacific Rim Blvd. Camas, WA 98607
Get access

Abstract

Thermal stability of nickel silicide is improved by adding a thin Co interlayer at Ni/Si interface. After high temperature anneal, the low sheet resistance of silicide and the low junction leakage of the ultra-shallow junction show the lack of film degradation. The transformation to disilicide phase occurred at a lower temperature. At 850°C, interface shows the truncated facet structure extended 100° to 200° below silicide/Si interface. With Co addition, nickel silicide formed on polysilicon and on SiGe films also show improved thermal stability and low sheet resistance. Formation temperature of disilicide phase occurred at lower temperature in all these cases.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Morimoto, T., Momose, H.S., Iinuma, T., Kunishima, I., Suguro, K., Okano, H., Katakabe, I., Nakajima, H., Tsuchiaki, M., Ono, M., Katsumata, Y., and Iwai, H., International Electron Devices Meeting Technical Digest, 1991, p653.Google Scholar
2. Lin, X.W., Ibrahim, N., Topeta, L., and Prmmanik, D., Mat. Res. Soc. Soc. Sypm. Proc. Vol. 514, p179, 1998.Google Scholar
3. Xu, D.X. et al, Thin Solid Films, 326, 143, 1998.Google Scholar
4. Mukai, R. et al, Thin Solid Films, 270, 567, 1995.Google Scholar
5. Colgan, E.G. et al, Materials Chemistry and Physics, 46, 209, 1996.Google Scholar
6. Poon, M.C. et al, Microelectronics Reliability, 38, 1495, 1998.Google Scholar
7. Mangelinck, D., Dai, J. Y., Pan, J. S., and Lahiri, S. K., Appl. Phys. Lett. 75, 1999, 1736.Google Scholar
8. Chi, D.Z., Mangelinck, D., Dai, J. Y., and Lahiri, S.K., Materials Research Society Spring Meeting Digest, 2000, p81.Google Scholar
9. Maa, J-S., Ono, Y., Tweet, D.J., Zhang, F., Hsu, S.T., J. Vac. Sci. Technol A., to be published, Jul/Aug (2001).Google Scholar
10. Tweet, D. J., Maa, J.-S. and Hsu, S.T., to be presented at MRS Spring Meeting, 2001.Google Scholar