Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-25T17:35:31.870Z Has data issue: false hasContentIssue false

Sputtering Effects and Two Dimensional Arrangement of Nanoparticles in Insulators Under High Flux Cu Implantation

Published online by Cambridge University Press:  21 February 2011

N. Kishimoto
Affiliation:
National Research Institute for Metals, 1-2-1 Sengen, Tsukuba, baraki 305-0047, [email protected]
C.G. Lee
Affiliation:
National Research Institute for Metals, 1-2-1 Sengen, Tsukuba, baraki 305-0047, Japan
N. Umeda
Affiliation:
Tsukuba University, I-I Ten-nodal, Tsukuba, baraki 305-0006, Japan
Y. Takeda
Affiliation:
National Research Institute for Metals, 1-2-1 Sengen, Tsukuba, baraki 305-0047, Japan
V.T. Gritsyna
Affiliation:
Kharkov State University, Kharkov 310077, Ukraine
Get access

Abstract

Application of negative heavy ions, alleviating surface charging on insulators, enables us to conduct low-energy and high-flux implantation, and leads to a well-defined tool to fabricate near-surface nanostructures. Negative Cu ions of 60 keV, at high doses, have generated nanocrystals in amorphous(a-)SiO2 with a size (∼10 nm) suitable for nonlinear optical devices. The kinetic processes, inside the solid and at the surface, are studied by cross-sectional TEM and tapping AFM, respectively. In a-SiO2, nanoparticles spontaneously grow with dose rate, being controlled by the surface tension and radiation-induced diffusion. Furthermore, the nanospheres give rise to a two-dimensional (2D) arrangement around a given dose rate. The 2D-distribution occurs in coincidence with enhanced sputtering where a considerable Cu fraction sublimates from the surface. The dose-rate dependence of nanoparticles indicates that the surface-sputtering process influences the intra-solid process and contributes to the 2D-distribution. A self-assembling mechanism for 2D-arrangement of nanospheres is discussed taking into account contribution of the surface sputtering.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Ruppin, R., J. Appl. Phys. 59, 1355 (1986).Google Scholar
12] Tokizaki, T., Nakamura, A., Kaneko, S., Uchida, K., Omi, S., Tanji, H. and Asahara, Y., Appl. Phys. Left. 65, 941 (1994).Google Scholar
[3] Kishimoto, N., Gritsyna, V.T., Kono, K., Amekura, H. and Saito, T., Nucl. Instrum. and Methods in Phys. Res. B127/128, 579 (1997).Google Scholar
[4] Kishimoto, N., Gritsyna, V.T., Kono, K., Amekura, H. and Saito, T., Mater. Res. Soc. Symp. Proc. Vol. 438, 435 (1997).Google Scholar
[5] Kishimoto, N., Gritsyna, V.T., Takeda, Y., Lee, C.G. and Saito, T., Nucl. Instnum. Methods in Phys. Res. B141, 299 (1998).Google Scholar
[6] Ishikawa, J., Tsuji, H., Toyota, Y., Gotoh, Y., Matsuda, K., Tanjo, T. and Sasaki, S., Nucl. Instrum and Methods in Phys. Res. B96, 7 (1995).Google Scholar
[7] Magruder, R.H. III, Haglund, R.F. Jr, Yang, L., Wittig, J.E. and Zuhr, R.A., J. Appl. Phys., 76, 708 (1994).Google Scholar
[8] Hosono, H., Fukushima, H., Abe, Y., Weeks, R.A. and Zuhr, R.A., J. Non-Cryst. Solids, 143, 157 (1992).Google Scholar
[9] Kishimoto, N., Umeda, N., Takeda, Y., Lee, C.G., Gritsyna, V.T., Nucl. Instrunm. and Methods in Phys.Res. B148, 1017 (1999).Google Scholar
[10] Devine, R.A.B., Nucl. Instrum. Methods in Phys. Res. B91, 378 (1994).Google Scholar
[11] Brongersma, M.L., Snoeks, E. and Polman, A., Appl. Phys. Lett. 71, 1628 (1997).Google Scholar
[12] Kishimoto, N., Takeda, Y., Gritsyna, V.T. and Iwamoto, E. and Saito, T., Proc. of 12th Int. Conf. on Ion Implantation Technology, IEEE (1999) in press.Google Scholar
[13] Ziegler, J.F., Biersack, J.P. and Littmark, U., The Stopping and Range of Ions in Solids, (Pergamon Press, New York, 1985), Chap 8.Google Scholar
[14] Takeda, Y., Gritsyna, V.T., Umeda, N., Lee, C.G. and Kishimoto, N., Nucl. Instrum. and Methods. in Phys. Res. B148, 1029 (1999).Google Scholar
[15] Lay, Thi Thi, Amekura, H., Takeda, Y. and Kishimoto, N. Mater. Res. Soc. Symp. 1999 Spring Meeging (2000) in press.Google Scholar
[16] Park, S.Y., Weeks, R.A. and Zhur, R.A., J. Non-Cryst. Solids, 191, 281 (1995).Google Scholar
[17] Umeda, N., Kishimoto, N., Takeda, Y., Lee, C.G. and Gritsyna, V.T., Nucl. Instrum. and Methods in Phys. Res. (1999) in press.Google Scholar