Hostname: page-component-7bb8b95d7b-nptnm Total loading time: 0 Render date: 2024-09-07T00:03:36.287Z Has data issue: false hasContentIssue false

Sol-Gel Synthesis of YBa2Cu3O7-& Using Yttrium, Barium and Copper Polyether Alkoxide Precursors

Published online by Cambridge University Press:  25 February 2011

Catherine J. Page
Affiliation:
University of Oregon, Department of Chemistry, Eugene, OR 97403
Carol S. Houk
Affiliation:
University of Oregon, Department of Chemistry, Eugene, OR 97403
Gary A. Burgoine
Affiliation:
University of Oregon, Department of Chemistry, Eugene, OR 97403
Get access

Abstract

Homogeneous solutions of yttrium, barium and copper 2-(2-methoxy)-ethoxyethoxides in 2-(2-methoxy)ethoxyethanol of appropriate lY:2Ba:3Cu stoichiometry have been prepared and used in sol-gel synthesis of YBa2Cu3O7-δ. To our knowledge, this is the first report of the preparation of a homogeneous solution of yttrium, barium and copper homoleptic alkoxides dissolved only in the parent alcohol. These solutions provide an excellent starting point for sol-gel synthesis of YBa2Cu3O7-° since the metals are mixed on the molecular scale, and because the solutions are stable with no possibility of ligand exchange to give insoluble products. Hydrolysis and careful heat treatment of gels produced from these solutions yield nearly pure tetragonal YBa2Cu3O7-δ at temperatures as low as 725°C. The preparation of these solutions and their characterization by small-angle x-ray scattering measurements and TEM are reported, as well as preliminary data pertaining to their use in the sol-gel synthesis of YBa2Cu3O7-δ.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Horowitz, H. S., McLain, S. J., Sleight, A. W., Druliner, J. D., Gai, P. L., VanKavelaar, M. J., Wagner, J. L., Biggs, B. D. and Poon, S. J., Science 243, 66 (1989).CrossRefGoogle Scholar
2. Kordas, G., Moore, G. A., Jorgensen, J. D., Rotella, F., Hitterman, R. L., Volin, K. J. and Faber, J., J. Mater. Chem. 1, 175 (1991).CrossRefGoogle Scholar
3. Kordas, G., J. Non-cryst. Solids 121, 436 (1990).Google Scholar
4. Moore, G., Kramer, S. and Kordas, G., Mater. Lett. 7, 415 (1989).CrossRefGoogle Scholar
5. Katayama, S. and Sekine, M., J. Mater. Res. 5, 683 (1990).Google Scholar
6. Catania, P., Hovnanian, N., Cot, L., Pham Thi, M., Kormann, R. and Ganne, J. P., Mat. Res. Bull. 25, 631 (1990).Google Scholar
7. Sauer, N. N., Garcia, E. G., Salazar, K. V., Ryan, R. R. and Martin, J. A., J. Am. Chem. Soc. 112, 1524 (1990).CrossRefGoogle Scholar
8. Hirano, S., Hayashi, T., Miura, M. and Tomonaga, H., Bull. Chem. Soc. Jpn. 62, 888 (1989).CrossRefGoogle Scholar
9. Goel, S. C., Kramer, K. S., Gibbons, P. C. and Buhro, W. E., Inorg. Chem. 28, 3619 (1989).Google Scholar
10. Rupich, M. W., Lagos, B. and Hachey, J. P., Appl. Phys. Lett. 55, 2447 (1989).CrossRefGoogle Scholar
11. Shibata, S., Kitagawa, T., Okazaki, H., Kimura, T. and Murakami, T., Jpn. J. Appl. Phys. 27, L53 (1988).CrossRefGoogle Scholar
12. Zheng, H. and Mackenzie, J. D., Mater. Lett. 7, 182 (1988).Google Scholar
13. Monde, T., Kozuka, H. and Sakka, S., Chem. Lett. 1988, 287.Google Scholar
14. Ravindranathan, P., Komarneni, S., Bhalla, A., Roy, R. and Cross, L. E., J. Mater. Res. 3 810 (1988).Google Scholar
15. Love, C. P., Torardi, C. C. and Page, C. J., Inorg. Chem. (1992), in press.Google Scholar
16. Page, C. J., Sur, S. K., Lonergan, M. C., Parashar, G. K., Magn. Reson. in Chem. 29, 1191 (1991).Google Scholar
17. Barium was usually weighed first because it was easier to adjust the mass of copper methoxide powder to obtain a stoichiometric ratio.Google Scholar
18. Glatters, O. and Kratky, O., Small Angle X-ray Scattering (Academic Press: NY, 1982), Chapters 5 and 15.Google Scholar
19. Faster gellation can be effected by spreading the solution into a thin layer, as in a Petrie dish. Under these conditions, gellation occurs within a few days.Google Scholar
20. Kulpa, A., Chaklader, A. C. D., Roemer, G., Williams, D. L. and Hardy, W. N., Supercond. Sci. Technol. 3, 483 (1990).Google Scholar
21. Manthiram, A. and Goodenough, J. B., Nature 329, 701 (1987).Google Scholar