Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-20T13:41:08.125Z Has data issue: false hasContentIssue false

Sol-Gel Derived Silica Layers for Low-k Dielectrics Applications

Published online by Cambridge University Press:  17 March 2011

Sylvie Acosta
Affiliation:
LMPM, UMR CNRS 5635, ENSCM, 8, rue de l'Ecole Normale, F34296 Montpellier cedex 5, France
André Ayral
Affiliation:
LMPM, UMR CNRS 5635, ENSCM, 8, rue de l'Ecole Normale, F34296 Montpellier cedex 5, France
Christian Guizard
Affiliation:
LMPM, UMR CNRS 5635, ENSCM, 8, rue de l'Ecole Normale, F34296 Montpellier cedex 5, France
Charles Lecornec
Affiliation:
LETI/DMEL/TCI, CEA-Grenoble, 17, rue des Martyrs, F38054 Grenoble cedex 9, France
Gérard Passemard
Affiliation:
ST Microelectronics, Central R&D, CEA-Grenoble, 17, rue des Martyrs, F38054 Grenoble cedex 9, France
Mehdi Moussavi
Affiliation:
LETI/DMEL/TCI, CEA-Grenoble, 17, rue des Martyrs, F38054 Grenoble cedex 9, France
Get access

Abstract

Porous silica exhibits attractive dielectric properties, which make it a potential candidate for use as insulator into interconnect structures. A new way of preparation of highly porous silica layers by the sol-gel route was investigated and is presented. The synthesis strategy was based on the use of common and low toxicity reagents and on the development of a simple process without gaseous ammonia post-treatment or supercritical drying step. Defect free layers were deposited by spin coating on 200 mm silicon wafers and characterized. Thin layers with a total porosity larger than 70% and an average pore size of 5 nm were produced. The dielectric constant measured under nitrogen flow on these highly porous layers is equal to ∼ 2.5, which can be compared to the value calculated from the measured porosity, ∼ 1.9. This difference is explained by the presence of water adsorbed on the hydrophilic surface of the unmodified silica.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Murarka, S.P., Solid State Technology, 83 (1996).Google Scholar
2. Cho, C., Smith, D. M. and Anderson, J., Materials Chemistry and Physics, 42, 91 (1995).10.1016/0254-0584(95)01569-8Google Scholar
3. Yang, H. S., Choi, S. Y., Hyun, S. H., Park, H. H. and Hong, J. K., J. of Non-Cryst. Solids, 221, 151 (1997).10.1016/S0022-3093(97)00335-9Google Scholar
4. Jo, M. H., Park, H. H., Kim, J.J., Hyun, S. H., Choi, S. Y. and Paik, J.T, J. Appl. Phys., 82, 1299, 1997.10.1063/1.365902Google Scholar
5. Smith, D. M., Johnston, G. P., Ackerman, W. C., Jeng, S. P., Gnade, B. E., Stoltz, R. A., Maskara, A. and Ramos, T., European Patent 0 775 669 A2, (1997).Google Scholar
6. Bruinsma, P.J., Hess, N.J., Bontha, J.R., Liu, J. and Baskaran, S., Mat. Res. Soc. Symp. Proc. 443, 105 (1997).10.1557/PROC-443-105Google Scholar
7. Hrubesch, L.W., L.E. Keene and Latorre, V.R., J. Mat. Res., 8, 1736 (1993).10.1557/JMR.1993.1736Google Scholar
8. Brinker, C. J., Frye, G. C., Hurd, A. J. and Ashley, C. S., Thin Solids Films, 201, 97 (1991).10.1016/0040-6090(91)90158-TGoogle Scholar
9. Klotz, M., Ayral, A., Guizard, C. and Cot, L., Bul. Korean Chem. Soc., 20, 879 (1999).Google Scholar
10. Klotz, M., Ayral, A., Guizard, C. and Cot, L., J. Mat. Chem., 10, 663 (2000).10.1039/a906181iGoogle Scholar
11. Lowell, S. and Shields, J.E., Introduction to Powder Surface Area (J. Wiley & Sons,1984).Google Scholar
12. Ayral, A., Mansouri, A. El, Vieira, M.P., Pilon, C., J. Mat. Sci. Lett., 17, 883 (1998).Google Scholar
13. Fardad, M. A., Yeatman, E. M., Dawnay, E. J. C., Green, M. and Horowitz, F., J. Non Cryst. Solids, 183, 260 (1995).10.1016/0022-3093(94)00661-XGoogle Scholar