Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-29T07:32:25.305Z Has data issue: false hasContentIssue false

Sol-Gel Derived PZT Fibers

Published online by Cambridge University Press:  25 February 2011

J. M. Boulton
Affiliation:
Arizona Materials Laboratories, Department of Materials Science and Engineering, University of Arizona, Tucson, AZ 85712.
G. Teowee
Affiliation:
Arizona Materials Laboratories, Department of Materials Science and Engineering, University of Arizona, Tucson, AZ 85712.
D. R. Uhlmann
Affiliation:
Arizona Materials Laboratories, Department of Materials Science and Engineering, University of Arizona, Tucson, AZ 85712.
Get access

Abstract

Sol-gel routes were developed to prepare densified PZT fibers. The effects of the degree of hydrolysis and the addition of an organic polymer to the precursor sol on fiber forming ability were investigated. Results on the crystalline and microstructural development of gels and fibers are presented. The effects of the incorporation of excess PbO and sintering atmosphere are also discussed, particularly in relation to densification.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Segal, D., Chemical Synthesis of Advanced Ceramic Materials, (Cambridge University Press, Cambridge, 1989).Google Scholar
2. Morton, M. J., Birchall, J. D. and Cassidy, J. E., Brit. Pat. No. 1360197 (19 June 1970).Google Scholar
3. Sowman, H. G. and Johnson, D. D., Ceramic and Engineering Science Proceedings 6, 1221 (1985).Google Scholar
4. Hirano, S., Hayashi, T., Nosaki, K. and Kato, K., J. Am. Ceram. Soc. 72, 707 (1989).Google Scholar
5. Yoko, T., Kamiya, K. and Tanaka, K., J. Mater. Sci. 25, 3922 (1990).Google Scholar
6. Janusson, H., Millar, C. E. and Milne, S. J. in Better Ceramics Through Chemistry IV, edited by Zelinski, B. J. J., Brinker, C. J., Clark, D. E. and Ulrich, D. R. (Mater. Res. Soc. Proc. 180, Pittsburgh, PA 1990) pp. 421424.Google Scholar
7. Aoki, S. I., Choi, S. C., Payne, D. A. and Yanagida, H. in Better Ceramics Through Chemistry IV, edited by Zelinski, B. J. J., Brinker, C. J., Clark, D. E. and Uhlrich, D. R. (Mater. Res. Soc. Proc. 180, Pittsburgh, PA 1990) pp. 485490.Google Scholar
8. Del Olmo, L. and Calzada, M. L., J. Non-cryst. Solids 121, 424 (1990).Google Scholar
9. Seth, V. K. and Schulze, W. A., Ferroelectrics 112, 283 (1990).Google Scholar
10. Gururaja, T. R., Christopher, D., Newnham, R. E. and Schulze, W. A., Ferroelectrics 47, 193 (1983).Google Scholar
11. Waller, D. J., Safari, A., Card, R. J. and O'Toole, M. P., J. Am. Ceram. Soc. 73, 3503 (1990).Google Scholar
12. Chida, Y., Nishimura, T. and Oguri, Y., European Patent Appln. No. 248432 A2 (9 Dec. 1987).Google Scholar
13. Nishi, T., Fujitsu, S., Miyayama, M., Koumoto, K. and Yanagida, H., Sogo Shikensho Nenpo (Tokyo Daigaku Kogakubu) 46, 143 (1987).Google Scholar
14. Teowee, G., Boulton, J. M., Bommersbach, W. M. and Uhlmann, D. R., “Second Harmonic Generation From PbTiO3-Based Ferroelectric Thin Films”, J. Non. Cryst. Solids, in press.Google Scholar
15. Teowee, G., Boulton, J. M., Lee, S. C. and Uhlmann, D. R., “Electrical Characterization of Sol-Gel Derived PZT Films”, Mater. Res. Soc. Proc. 243, in press.Google Scholar
16. Gurkovich, S. R. and Blum, J. B., Ferroelectrics 62, 189 (1985).Google Scholar
17. Hirano, S. (private communication).Google Scholar
18. Chapin, L. N. and Myers, S. A., in Ferroelectric Thin Films, edited by Myers, E. R. and Kingon, A. I. (Mater. Res. Soc. Proc. 200, Pittsburgh, PA 1990) pp. 153158.Google Scholar
19. Teowee, G., Boulton, J. M. and Uhlmann, D. R., “Optimization of Sol-Gel Derived PZT Thin Films By The Incorporation of Excess PbO”, paper presented at this meeting.Google Scholar
20. Aizawa, M., Nakagawa, Y., Nosaka, Y., Fujii, N. and Miyama, H., J. Non-cryst. Solids 124, 112(1990).Google Scholar