Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-27T02:05:41.269Z Has data issue: false hasContentIssue false

Single Crystalline 4H-SiC MEMS Devices with N-P-N Epitaxial Structure

Published online by Cambridge University Press:  18 June 2014

Feng Zhao
Affiliation:
Micro/Nanoelectronics and Energy Laboratory, Electrical Engineering, School of Engineering and Computer Science, Washington State University, Vancouver, WA 98686 USA
Allen Lim
Affiliation:
Micro/Nanoelectronics and Energy Laboratory, Electrical Engineering, School of Engineering and Computer Science, Washington State University, Vancouver, WA 98686 USA
Zhibang Chen
Affiliation:
Micro/Nanoelectronics and Energy Laboratory, Electrical Engineering, School of Engineering and Computer Science, Washington State University, Vancouver, WA 98686 USA
Chih-Fang Huang
Affiliation:
Department of Electrical Engineering, National Tsing Hua University, 30013 Hsinchu, Taiwan, R.O.C.
Get access

Abstract

In this paper, single crystal 4H-SiC MEMS devices with n-p-n epitaxial structure was fabricated. A dopant-selective photoelectrochemical etching technique was applied to etch the sacrificial p-type SiC layer to release n-type SiC suspended structures on n-type SiC substrate. The selective etching was achieved by applying a bias which employs the different flat-band potentials of n-SiC and p-SiC in KOH solution. Such MEMS devices have the potential to fully exploit the superior properties of single crystal SiC for harsh environment operation, as well as mature epitaxial growth and device fabrication of 4H-SiC. The n-p-n structure, together with the previously reported p-n structure, extends the capability of monolithic integration between MEMS with electronic devices and circuits on SiC platform.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Locke, C., Kravchenko, G., Waters, P., Reddy, J. D., Du, K., Volinsky, A.A., Frewin, C. L., Saddow, S. E., Materials Science Forum 615617, 633 (2009).CrossRefGoogle Scholar
Gao, D., Wijesundara, M. B. J., Carraro, C., Howe, R. T. and Maboudian, R., IEEE Sensors Journal 4, 441 (2004).CrossRefGoogle Scholar
Ziermann, R., von Berg, J., Reichert, W., Obermeier, E., Eickhoff, M. and Krotz, G., Proc. Transducer, 1411 (1997).Google Scholar
Adachi, K., Watanabe, N., Okamoto, H., Yamaguchi, H., Kimoto, T. and Suda, J., Sensors and Actuators A 197, 122 (2013).CrossRefGoogle Scholar
Hossain, T. K., MacLaren, S., Engel, J. M., Liu, C., Adesida, I. and Okojie, R. S., J. Micromech. Microeng. 16, 751 (2006).CrossRefGoogle Scholar
Sheridan, D. C., Casady, J. B., Ellis, E. C., Siergiej, P. R., Cressler, J. D., Strong, R. M., Urban, W. M., Valek, W. F., Seiler, C. F. and Buhay, H., Materials Science Forum, 338342, 1053 (2000).CrossRefGoogle Scholar
Beheim, G. and Salupo, C. S., Proc. Materials Research Society Symposium 622, T8.9.1 (2000).CrossRefGoogle Scholar
Wieczorek, G., Ngo, H.D., Obermeier, E., Fagnani, G. and Robb, K. M., Proc. 20th Eurosensors, M2B-P22 (2006).Google Scholar
Zhang, J., Sugioka, K., Wada, S., Tashiro, H., Toyoda, K. and Midorikawa, K., Appl. Surf. Sci. 127129, 793 (1998).CrossRefGoogle Scholar
Huang, X. M., Ph.D. dissertation, Dept. Physics, Caltech, Pasadena, CA, 2004.Google Scholar
Watanabe, N., Kimoto, T., Suda, J., Proc. of SPIE 7926, 7926B–1 (2011).Google Scholar
Zhao, F., Islam, M. M. and Huang, C. F., Materials Lett. 65, 409 (2011).CrossRefGoogle Scholar
van Dorp, D. H. and Kelly, J. J., Journal of Electroanalytical Chemistry 599, 260 (2007).CrossRefGoogle Scholar
Rysy, S., Sadowski, H. and Helbig, R., Journal of Solid State Electrochem 3, 437 (1999).Google Scholar