Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-29T07:56:00.462Z Has data issue: false hasContentIssue false

Silicon Germanium Heterobipolar Transistor Structures with Extremely High Base Doping

Published online by Cambridge University Press:  22 February 2011

E. Kasper
Affiliation:
Daimler-Benz AG Research Center Ulm, Wilhelm-Runge-Str. 11, D-7900 Ulm, Germany
H. Kibbel
Affiliation:
Daimler-Benz AG Research Center Ulm, Wilhelm-Runge-Str. 11, D-7900 Ulm, Germany
U. König
Affiliation:
Daimler-Benz AG Research Center Ulm, Wilhelm-Runge-Str. 11, D-7900 Ulm, Germany
Get access

Abstract

The complete layer sequence of a SiGe-HBT including the emitter contact is grown by Si-MBE. The base doping level was increased from 1018/cm3 up to 1020/cm3 which resulted in very low intrinsic base sheet resistivities (0.27 kΩ/□ for a 50 nm base). With a base Ge content x = 32 % the highest current gain β=5000 could be obtained. A SiGe spacer between base and collector improved the DC-characteristics considerably.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Shockley, W., US Patent 2569347 (1948)Google Scholar
[2] Kromer, H., Proc. IRE 45, 1535 (1957)Google Scholar
[3] Sugeta, T. and Ishibashi, T., Hetero-Bipolar Transistor and Its LSI Application, in Semiconductors and Semimetals, Vol. 30, Academic Press, Boston, 1990 Google Scholar
[4] Kasper, E. and Russer, P., German Patent 2719464 (1977)Google Scholar
[5] Iyer, S.S., Patton, G.L., Delage, S.L., Tiwari, S., and Stork, J.M.C., in Silicon Molecular Beam Epitaxy, Vol. 88–8, Electrochem. Soc., Pennington, NJ, 1988, p. 114 Google Scholar
[6] Patton, G. L., Comfort, J. H., Meyerson, B. S., Crabbe, E. F., Scilla, G. J., de Fresart, E., Stork, J. M. C., Sun, J. Y. C., Harame, D. L., and Burghartz, J. N., IEEE Electron Device Letters 11, 171 (1990)CrossRefGoogle Scholar
[7] Crabbe, E. F., Patton, G. L., Stork, J. M. C., Comfort, J. H., Meyerson, B. S., and Sun, J. Y. C., Dig. IEDM 90, 17 (1990)Google Scholar
[8] Schreiber, H. -U. and Bosch, B. G., Dig. IEDM 89 (1989)Google Scholar
[9] Kamins, T. I., Nauka, K., Camnitz, L. H., Kruger, J. B., Hoyt, J. L., King, C. A., Noble, D. B., and Gibbons, J. F., Dig. IEDM 89, 647 (1989)Google Scholar
[10] Kasper, E. and Werner, K., J. Electrochem. Soc. 132, 2481 (1985)Google Scholar
[11] Kibbel, H., Kasper, E., Narozny, P., Schreiber, H.-U., Thin Solid Films 184, 163 (1990)Google Scholar
[12] Pukite, P. R., Iyer, S. S., and Scilla, G. J., Appl. Phys. Lett. 54, 916 (1989)Google Scholar
[13] Warnack, J., Cressler, J. D., Jenkins, K. A., Chen, T. -C., Sun, J. Y. C. and Tang, D.D., IEEE Electron Dev. Lett. 11, 475 (1990)CrossRefGoogle Scholar
[14] Schreiber, H. -U., Bosch, B. G., Kasper, E., and Kibbel, H., Electron. Lett. 25, 185 (1989)CrossRefGoogle Scholar
[15] Schreiber, H. -U., Technical Report, will be publishedGoogle Scholar
[16] Schreiber, H. -U., Albers, J. N., Bosch, B. G., Electron. Lett. 25, 1684 (1989)Google Scholar
[17] Narozny, P., Dämbkes, H., Kibbel, H. and Kasper, E., IEEE Trans. ED–36, 2363 (1989)Google Scholar
[18] Narozny, P., Kohlhoff, D., Kibbel, H., and Kasper, E., Proc. ESSDERC 90, 477, ed. by Ecclestone, W. and Rosser, P. J., Adam Hilger, Bristol (1990)Google Scholar