Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-25T17:34:46.838Z Has data issue: false hasContentIssue false

Silicide Formation for Ni and Pd Bilayers on Si(100) Substrates

Published online by Cambridge University Press:  21 March 2011

Xin-Ping Qu
Affiliation:
Dept. of Solid State Science, Gent University, Krijgslaan 281/S1, Gent, Belgium
C. Detavernier
Affiliation:
Dept. of Solid State Science, Gent University, Krijgslaan 281/S1, Gent, Belgium
R. L. Van Meirhaeghe
Affiliation:
Dept. of Solid State Science, Gent University, Krijgslaan 281/S1, Gent, Belgium
F. Cardon
Affiliation:
Dept. of Solid State Science, Gent University, Krijgslaan 281/S1, Gent, Belgium
Get access

Abstract

The silicide formation for Ni/Pd and Pd/Ni bilayers on Si(100) substrates was investigated. X-ray diffraction and photoelectron spectroscopy (XPS) depth profiling have been applied to study the phase formation of the silicide. We found that with addition of Pd into Ni/Si, a uniform layer of ternary Ni1−xPdxSi layer formed and kept stable for a wide temperature range. The lattice parameter of Ni1−xPdxSi as a function of Pd addition was calculated. The nucleation temperature of NiSi2 was delayed due to the addition of Pd. The higher the Pd addition, the larger the increase in NiSi2 nucleation temperature. We also studied the effect on the addition of Ni to the Pd/Si reaction. For pure Pd/Si reaction PdSi nucleated from Pd2Si at 750°C or above. For Ni/Pd/Si reaction, Pd2Si changed to Ni1−xPdxSi at temperature lower than 750°C due to the incorporation of Ni. The phenomena were explained by classic nucleation theory taking into account the effect of mixing entropy effect.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Deng, F., Johnson, R. A., Asbeck, P. M., Lau, S. S., Dubbelday, W. B., Hsiao, T., and Woo, J., J. Appl. Phys. 81, 8047 (1997).Google Scholar
2. D'heurle, F. M., J. Mater. Res. 3, 167 (1988).Google Scholar
3. Maillard-Schaller, E., Boyanov, B. I., English, S., and Nemanich, R. J., J. Appl. Phys. 85, 3614 (1999).Google Scholar
4. Mangelinck, D., Dai, J. Y., Pan, J. S., and Lahiri, S. K., Appl. Phys. Lett. 75, 1736 (1999).Google Scholar
5. Cheng, L. W., Cheng, S. L., CHen, L. J., CHien, H. C., Lee, H. L., and Pan, F. M., J.Vac. Sci. Technol. A 18, 1176 (2000).Google Scholar
6. Mangelinck, D., Gas, P., Grob, A., Pichaud, B., and Thomas, O., J.Appl. Phys. 79, 4078 (1996); D. Mangelinck, P. Gas, J. M. Gay, B. Pichaud, and O. Thomas, ibid, 84, 2583 (1998).Google Scholar
7. Fenske, F., Schopke, A., Schulze, S., and Selle, B., Appl. Surf. Sci. 104/105, 218 (1996).Google Scholar
8. Nygren, S., Caffin, D., Ostling, M., and D'Heurle, F. M., Appl. Surf. Sci. 53, 87 (1991).Google Scholar
9. Finstad, T. G. and Nicolet, M. A., J. Appl. Phys. 50, 303 (1979).Google Scholar
10. Mayer, J. W., Lau, S. S., and Tu, K. N., J. Appl. Phys. 50, 5855 (1979).Google Scholar
11. Olowolafe, J. O., Tu, K. N., and Angilello, J., J. Appl. Phys. 50, 6316 (1979).Google Scholar
12. Ottaviani, G., Tu, K. N., Chu, W. K., Hung, L. S., and Mayer, J.W., J. Appl. Phys. 53, 4903 (1982).Google Scholar
13. Tsai, C. J., Chung, P. L. and Tu, K. H., Thin Solid films, 365, 72 (2000).Google Scholar
14. Detavernier, C., Meirhaeghe, R. L. Van, Cardon, F., Maex, K., Phys. Rev. B. 63, 12045 (2000).Google Scholar