Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-28T23:00:19.274Z Has data issue: false hasContentIssue false

Si/GaAs heterostructures fabricated by direct wafer bonding

Published online by Cambridge University Press:  21 March 2011

Viorel Dragoi
Affiliation:
Max Planck Institute of Microstructure Physics, Weinberg 2, D-06120 Halle (Saale), Germany
Marin Alexe
Affiliation:
Max Planck Institute of Microstructure Physics, Weinberg 2, D-06120 Halle (Saale), Germany
Manfred Reiche
Affiliation:
Max Planck Institute of Microstructure Physics, Weinberg 2, D-06120 Halle (Saale), Germany
Ionut Radu
Affiliation:
Max Planck Institute of Microstructure Physics, Weinberg 2, D-06120 Halle (Saale), Germany
Erich Thallner
Affiliation:
EV Group, St. Florian, A-4780 Schärding, Austria
Christian Schaefer
Affiliation:
EV Group, St. Florian, A-4780 Schärding, Austria
Paul Lindner
Affiliation:
EV Group, St. Florian, A-4780 Schärding, Austria
Get access

Abstract

Si/GaAs heterostructures were obtained by a low temperature direct wafer bonding (DWB) method which uses spin-on glass (SOG) intermediate layers. The use of intermediate SOG layers allows the fabrication of Si/GaAs heterostructures at processing temperatures lower than 200°C. The achieved bonding energy permits thinning down to a few microns of Si and GaAs wafers, respectively, using grinding procedures followed by chemical mechanical polishing (CMP). After thinning, the heterostructures sustained annealing temperatures of 450°C without damaging of the bonded interface. The above bonding procedure was successfully applied for bonding GaAs wafers to Si wafers with structured surfaces. A technology was developed based on this bonding method for producing universal GaAs-on-Si or Si-on-GaAs substrates.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Taylor, P. J., Jesser, W. A., Benson, J. D., Martinka, M., Dinan, J. H., Bradshaw, J., Lara-Taysing, M., Leavitt, R. P., Simonis, G., Chang, W., Clarck, W. W. III and Bertness, K. A., J. of Appl. Phys. 89, 4365 (2001).Google Scholar
2. Tong, Q. Y. and Gösele, U., “Semiconductor Wafer Bonding - Science and Technology”, John Wiley & Sons, New York, 1999.Google Scholar
3. Chand, N. in “Properties of Gallium Arsenide” (2nd ed.), EMIS Datareviews Series no. 2, 1990, pp. 459.Google Scholar
4. Tong, Q.-Y., Kim, W. J., Lee, T.-H. and Gösele, U., Electrochem. Solid-State Lett. 1, 52 (1998).Google Scholar
5. Farrens, S. N., Dekker, J. R., Smith, J. K. and Roberds, B. E., J. of the Electrochem. Soc. 142, 3950 (1995)Google Scholar
6. Wiegand, M., Reiche, M. and Gösele, U., J. of the Electrochem. Soc. 147, 2734 (2000)Google Scholar
7. Kräuter, G., Schumacher, A. Gösele, U., Jaworek, T. and Wegner, G., Adv. Mater. 9, 417 (1997).Google Scholar
8. Hansen, D. M., Moran, P. D., Dunn, K. A., Babcock, S. E., Matiy, R. J. and Kuech, T. F., J. of Chryst. Growth 195, 144 (1998).Google Scholar
9. Alexe, M., Dragoi, V., Reiche, M. and Gösele, U., Electronic Lett. 36, 677 (2000).Google Scholar