Published online by Cambridge University Press: 01 February 2011
Silicon carbide (SiC) semiconductor devices for high power are becoming more mature and are now commercially available as discrete devices. Schottky diodes have been on the market since a few years but also bipolar junction transistors (BJTs), JFETs and MOSFETs are now reaching the market. The interest is rapidly growing for these devices in high power and high temperature applications. The BJTs have low conduction losses, fast switching capability, operate in normally-off mode, have high radiation hardness, and can handle high power density.
This paper will review the current state of the art in active switching device performance with special emphasis on BJTs. Device performance has been demonstrated over a wide temperature interval. A very important feature in high power switch applications is the low on-resistance of a device. Better material quality and epi processes suppress the amount of basal plane dislocations to avoid stacking fault formation generated during high current injection. This has long been a concern for bipolar SiC devices but several research reports and long term reliability measurements of pn-junctions show that the bipolar degradation problem can be solved by a fine-tuned epitaxial technique. A discussion on surface passivation control is included.
Finally, an example of a power switching module is given also demonstrating the excellent paralleling capability of BJTs.