Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-03T04:06:23.794Z Has data issue: false hasContentIssue false

Semi-Empirical Tight-Binding Parameters for Total Energy Calculation in Zinc

Published online by Cambridge University Press:  10 February 2011

A. Bere
Affiliation:
Laboratoire d'Etudes et de Recherches sur les Matériaux, upresa-cnrs 6004, Institut des Sciences de la Matière et du Rayonnement, 6 Bd du Maréchal Juin 14050 Caen Cedex France, [email protected]
A. Hairie
Affiliation:
Laboratoire d'Etudes et de Recherches sur les Matériaux, upresa-cnrs 6004, Institut des Sciences de la Matière et du Rayonnement, 6 Bd du Maréchal Juin 14050 Caen Cedex France, [email protected]
G. Nouet
Affiliation:
Laboratoire d'Etudes et de Recherches sur les Matériaux, upresa-cnrs 6004, Institut des Sciences de la Matière et du Rayonnement, 6 Bd du Maréchal Juin 14050 Caen Cedex France, [email protected]
E. Paumier
Affiliation:
Laboratoire d'Etudes et de Recherches sur les Matériaux, upresa-cnrs 6004, Institut des Sciences de la Matière et du Rayonnement, 6 Bd du Maréchal Juin 14050 Caen Cedex France, [email protected]
Get access

Abstract

The semi-empirical tight-binding method is used to build up an interatomic potential in zinc. Using relaxed structures, the parameters are fitted to the lattice parameters, the elastic constants and the vacancy formation energy. The total energy calculation predicts the stability of the h.c.p. structure. The potential is used to calculate the energy of some extended defects: the basal stacking fault and two twin boundaries.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Serra, A., Pond, R. and Bacon, D.J., Acta Metall. Mater. 39, 1469 (1991) and literature quoted therein.Google Scholar
2. Igarashi, M., Khantha, M. and Vitek, V., Phil. Mag. B63, 603 (1991).Google Scholar
3. Mikhin, A.G. and de Diego, N., Phil. Mag. A73, 1211 (1996).Google Scholar
4. Finnis, M.W. and Sinclair, J.E., Phil. Mag. A50, 45 (1984).Google Scholar
5. Harris, J.E. and Masters, B.C., Proc. Roy. Soc. A292, 240 (1966).Google Scholar
6. Legrand, B., Phil. Mag. B49, 171 (1984).Google Scholar
7. Serra, A., private communication.Google Scholar
8. Sutton, A.P., Finnis, M.W., Pettifor, D.G. and Ohta, Y., J. Phys. C21, 35 (1988).Google Scholar
9. Harrisson, W.A., Electronic Structure and the Properties of Solids (W.H. Freeman and Company, 1980).Google Scholar
10. Hairie, A., Hairie, F., Lebouvier, B. and Paumier, E., Mat. Sci. Forum 207–209, 105 (1996).Google Scholar
11. Chen, J., Béré, A., Hairie, A., Nouet, G. and Paumier, E., Computational Materials Science 501 (1997).Google Scholar
12. Li, X.P., Nunes, R.W. and Vanderbilt, D., Phys. Rev. B47, 10891 (1993).Google Scholar
13. Haydock, R., Solid State Physics (ed. Seitz, F. and Turnbull, D., 1980) 35, 215.Google Scholar
14. Seeger, A., Phil. Mag. A64, 735 (1991).Google Scholar
15. Simon, J.P., J. Phys. F: Metal Phys. 10, 337 (1980).Google Scholar
16. Serra, A. and Bacon, D.J., Phil. Mag. A54, 793 (1986).Google Scholar
17. Hagège, S., Mori, M. and Ishida, Y., J. Phys. Cl 51, 161 (1990).Google Scholar
18. Braisaz, T., Ruterana, P., Lebouvier, B. and Nouet, G., Phys. Stat. Sol. B191, 267 (1995).Google Scholar
19. Lay, S. and Nouet, G., Phil. Mag. A70, 261 (1994).Google Scholar
20. Braisaz, T., Ruterana, P., Nouet, G. and Pond, R.C., Phil. Mag. A75, 1075 (1997).Google Scholar