Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-05T05:03:28.972Z Has data issue: false hasContentIssue false

Scaling Challenges for NAND and Replacement Memory Technology

Published online by Cambridge University Press:  08 July 2011

Kirk Prall*
Affiliation:
Micron Technology, 8000 S. Federal Way, Boise, ID [email protected]
Get access

Abstract

Planar NAND technology is rapidly approaching its fundamental limits and will likely transition to a three dimensional structure. The scaling challenges facing NAND will be reviewed. Emerging memory technologies, such as the cross-point, will be discussed. The materials challenges facing emerging memories will be reviewed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Prall, , Parat, K., Ieee Iedm 2010, pg. 102 Google Scholar
[2] Prall, , NVSMW, 2007, pg. 5 Google Scholar
[3] Lee, , et al. , IEEE EDL, May 2002, pg 264 Google Scholar
[4] Hung, , et al. , IEEE TRED, April 2008, pg. 1020 Google Scholar
[5] Ghetti, , et al. , SSE, 2005, pg. 1806 Google Scholar
[6] Okuyama, , et al. , IEEE IEDM 1998, pg. 905 Google Scholar
[7] Ho, , et al. , IEEE EDL, Nov. 2008, pg 1199 Google Scholar
[8] Lee, , et al. , IEEE NVSMW, 2006, pg. 31 Google Scholar
[9] Reid, , et al. , IEEE TRED, Oct 2009, pg 2255 Google Scholar
[10] Asenov, , et al. , IEEE TRED, Apr. 2001, pg. 722 Google Scholar
[11] Asenov, , et al. , IEEE TRED, May 2003, pg 1254 Google Scholar
[12] Kurata, , et al. , IEEE JSSC, June 2007, pg. 1362 Google Scholar
[13] Bae, , et al. , IEEE TRED, Aug. 2009, pg 1624 Google Scholar
[14] Compagnoni, , et al. , IEEE TRED, Oct. 2008, 2695 Google Scholar
[15] Oh, , et al. , IEEE NVSMW, 2009, pg. 5 Google Scholar
[16] Lee, , et al. , IEEE NVSMW, 2006, pg. 31 Google Scholar
[17] Lee, , et al. , IEEE TDMR, March 2004, pg. 110 Google Scholar
[18] Kim, , et al. , IEEE EDL, 2009, pg 760 Google Scholar
[19] Mielke, , et al. , IEEE IRPS, 2006, pg. 29.Google Scholar
[20] Belgal, , et al. , IEEE IRPS, 2006, pg. 2002, pg. 7 Google Scholar
[21] Wang, , et al. , IEEE IMW, 2009, pg. 1 Google Scholar
[22] Kim, , Samsung, Hot Chips Memory Seminar, 2010 Google Scholar
[23] Tega, , et al. , IEEE IEDM, 2006, pg 1 Google Scholar
[24] Pierce, , Denali Software, Inc. 2009 Google Scholar
[25] Matuoka, , IEEE IEDM, 1987, 552 Google Scholar
[26] Fukuda, , IEEE ISSCC 2011, 11.1Google Scholar
[27] Kim, , IEEE IEDM 2010, 1.1 Google Scholar
[28] Nikkei Electronics, Feb. 2011, pg. 38 Google Scholar
[29] Tanaka, , et al. , IEEE VLSI Symp., 2007 pg. 14 Google Scholar
[30] Okano, , et al. , APL, 2006 Vol. 76, pg.233 Google Scholar
[31] Waser, , et al. , Adv. Material, 2009, pg. 2632 Google Scholar
[32] Liu, , et al. , APL, 2000 Vol. 76, pg. 2749 Google Scholar
[33] Li, , et al. , IEEE Trans.. on Magnetics, Feb. 2005, pg. 909 Google Scholar
[34] Kau, , et al. , IEEE IEDM, 2009, pg. 617 Google Scholar
[35] Wei, , et al. , IEEE IEDM, 2008, pg. 1 Google Scholar
[36] Raoux, S., Wuttig, M., Phase Change Materials Science and Applications, Springer 2009 Google Scholar
[37] Sosago, , et al. , IEEE VLSI 2009, pg. 24 Google Scholar
[38] Lee, , et al. , IEEE IEDM 2007, 30.2 Google Scholar
[39] Park, , et al. , Nanotechnology, 2010, Vol. 21, 195201 Google Scholar
[40] Gopalakrishnan, , et al. , IEEE VLSIT 2010, pg. 205 Google Scholar
[41] Wei, , et al. , IEEE IEDM 2008 Google Scholar
[42] Huang, , et al. , Sci. in China, Physics, Mechanics, & Astronomy, 2005, (48), No. 3, pg. 381 Google Scholar