Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-29T08:15:55.605Z Has data issue: false hasContentIssue false

Role of RF Power and Gas Mixture in Some Optical and Photoluminescence Properties of Dual-Plasma a-C:H Films

Published online by Cambridge University Press:  10 February 2011

T. Heitz
Affiliation:
LPICM (UMR 7647 CNRS) Ecole Polytechnique, 91128 Palaiseau (France)
C. Godet
Affiliation:
LPICM (UMR 7647 CNRS) Ecole Polytechnique, 91128 Palaiseau (France)
J.E. Bouree
Affiliation:
LPICM (UMR 7647 CNRS) Ecole Polytechnique, 91128 Palaiseau (France)
B. Drevillon
Affiliation:
LPICM (UMR 7647 CNRS) Ecole Polytechnique, 91128 Palaiseau (France)
V. Chu
Affiliation:
INESC, Alves Redol 9, 1000 Lisboa (Portugal)
J.P. Conde
Affiliation:
IST, Department of Materials Engineering, Av. Rovisco Pais, 1096 Lisboa (Portugal)
C. Clerc
Affiliation:
CSNSM, Bat. 104-108, Université Paris-Sud, 91405 Orsay (France)
Get access

Abstract

Electronic properties of polymer-like hydrogenated amorphous carbon films, grown in a RF-assisted microwave plasma reactor, have been studied using optical absorption and photoluminescence spectroscopies. Using a Forouhi-Bloomer parametrization of π-π* transitions, two regimes are evidenced for increasing C atom density : a decrease of the optical gap Eππ* at constant (H/H+C) content attributed to sp2C clustering, followed by some H elimination with minor changes in Eππ* due to cross-linking of polymer chains. The photoluminescence efficiency in the visible range (peak at ≈ 2.3 eV) is found to decrease over four orders of magnitude at the onset of the cross-linking regime. This quenching is attributed to stress-induced non-radiative centers.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Liedtke, S., Jahn, K., Finger, F. and Fuhs, W., J. Non-Cryst. Solids 97, 1083 (1987).Google Scholar
2. Chernyshov, S.V., Terukov, E.I., Vassilyev, V. and Volkov, A.S., J. Non-Cryst. Solids 134, 218 (1991).Google Scholar
3. Robertson, J., Phil. Mag. B 76, 335 (1997).Google Scholar
4. , Rusli, Amaratunga, G.A.J. and Robertson, J., Phys. Rev. B 53, 16306 (1996).Google Scholar
5. Giorgis, F., Giuliani, F., Pirri, C.F., Tagliaferro, A. and Tresso, E., J. Non-Cryst. Solids (1998) to be published.Google Scholar
6. Bourée, J.E., Heitz, T., Godet, C., Drévillon, B., Conde, J.P., Chu, V., BerberanSantos, M.N. and Fedorov, A., J. Non-Cryst. Solids (1998) to be published.Google Scholar
7. Yoshimi, M., Shimizu, H., Hattori, K., Okamoto, H. and Hamakawa, Y., Optoelectronics 7, 69 (1992).Google Scholar
8. Cernogora, J., Phys. Stat. Solidi (b) 201, 303 (1997).Google Scholar
9. Godet, C., Proc. 1st Specialist Meeting on Amorphous Carbon (Cambridge, 1997) to be published.Google Scholar
10. Street, R.A., Adv. Phys. 30, 593 (1979).Google Scholar
11. Etemadi, R., Godet, C., Perrin, J., Drévillon, B., Huc, J., Parey, J.Y., Rostaing, J.C. and Coeuret, F., J. Vac. Sci. Technol. A 15, 320 (1997).Google Scholar
12. Godet, C., Heitz, T., Bourée, J.E., Drévillon, B. and Clerc, C., J. Appl. Phys. (1998) submitted.Google Scholar
13. Forouhi, A.R. and Bloomer, I., Phys. Rev. B 34, 7018 (1986).Google Scholar
14. Lormes, W., Hundhausen, M. and Ley, L., J. Non-Cryst. Solids (1998) to be published.Google Scholar
15. Robertson, J., J. Non-Cryst. Solids 198–200, 615 (1996).Google Scholar