Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-19T07:29:24.876Z Has data issue: false hasContentIssue false

The Role of Disorder and the Elastic Robustness of Bulk Metallic Glasses

Published online by Cambridge University Press:  28 December 2012

P. M. Derlet
Affiliation:
Condensed Matter Theory Group, Paul Scherrer Institut, CH-5232VilligenPSI, Switzerland
R. Maaß
Affiliation:
California Institute of Technology, Division of Engineering and Applied Sciences, USA
Get access

Abstract

Despite significant atomic-scale heterogeneity, bulk metallic glasses well below their glass transition temperature exhibit a surprisingly robust elastic regime and a sharp elastic-to-plastic transition with a yield stress that depends approximately linearly on temperature. The present work attempts to understand these features within the framework of thermally activated plasticity. The presented statistical thermal activation model, in which the number of available structural transformations scales exponentially with system size, results in two distinct temperature regimes of deformation. At temperatures close to the glass transition temperature thermally activated Newtonian plastic flow emerges, whilst at lower temperatures the deformation properties fundamentally change due to the eventual kinetic freezing of the available structural transformations. In this regime, a linear temperature dependence emerges for the stress which characterises the elastic to plastic transition. For both regimes the transition to macroscopic plastic flow corresponds to a transition from a barrier energy dominated to a barrier entropy dominated statistics. The work concludes by discussing the possible influence that kinetic freezing might have on the low temperature heterogeneous and high temperature homogeneous plasticity of bulk metallic glasses.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Schuh, C. A., Hufnagel, T. C. and Ramamurty, U, Acta. Mater. 55, 4067 (2007).10.1016/j.actamat.2007.01.052CrossRefGoogle Scholar
Falk, M. L. and Langer, J. S., Annual Review of Condensed Matter Physics 2, 353 (2011).10.1146/annurev-conmatphys-062910-140452CrossRefGoogle Scholar
Johnson, W. L. and Samwer, K. A., Phys. Rev. Lett. 95, 195501–4 (2005).10.1103/PhysRevLett.95.195501CrossRefGoogle Scholar
Lu, J., Ravichandran, G. and Johnson, W. L., Acta. Mater 51, 3429 (2003).10.1016/S1359-6454(03)00164-2CrossRefGoogle Scholar
Wu, W. F., Li, Y. and Schuh, C. A., Phil. Mag. 88, 71 (2008).10.1080/14786430701762619CrossRefGoogle Scholar
Heuer, A., J. Phys.: Condens. Matter 20, 373101 (2008).Google Scholar
Harmon, J. S., Demetriou, M. D., Johnson, W. L. and Samwer, K., Phys. Rev. Lett. 99, 135502 (2007).10.1103/PhysRevLett.99.135502CrossRefGoogle Scholar
Derlet, P. M. and Maaß, R., in preparation Google Scholar
Wang, W. H., J. Appl. Phys. 110, 053521 (2011).Google Scholar
Stillinger, F. H. and Weber, T. A., Science 225, 983 (1984).10.1126/science.225.4666.983CrossRefGoogle Scholar
Shell, M. S., Debenedetti, P. G., and Panagiotopoulous, A. Z., Phys. Rev. Lett. 92, 035506 (2004).10.1103/PhysRevLett.92.035506CrossRefGoogle Scholar
Fyodorov, Y. V., Phys. Rev. Lett. 92, 240601 (2004).10.1103/PhysRevLett.92.240601CrossRefGoogle Scholar
Adam, G. and Gibbs, J. H., J. Chem. Phys. 43, 139 (1965).10.1063/1.1696442CrossRefGoogle Scholar
Kirkpatrick, T. R., Thirumalai, D. and Wolynes, P. G., Phys. Rev. A 40, 1045 (1989).10.1103/PhysRevA.40.1045CrossRefGoogle Scholar
Debenedetti, P. G. and Stillinger, F. H., Nature 419, 259 (2001)10.1038/35065704CrossRefGoogle Scholar
Derlet, P. M. and Maaß, R., Phys. Rev. B 84, 220201(R) (2011).10.1103/PhysRevB.84.220201CrossRefGoogle Scholar
Derrida, B., Phys. Rev. Lett. 45, 79 (1980).10.1103/PhysRevLett.45.79CrossRefGoogle Scholar
Bouchaud, J.-P. and M´ezard, M., J. Phys. A 30, 7997 (1997)10.1088/0305-4470/30/23/004CrossRefGoogle Scholar