No CrossRef data available.
Article contents
The Role of Boron in the Mechanical Milling of Titanium-6 %Aluminium-4% Vanadium Powders
Published online by Cambridge University Press: 21 February 2011
Abstract
The reduction in grain size of a metal can lead to significant improvement in mechanical properties. Mechanical alloying (MA) with a second phase is a possible route to producing fine-grained, particulate reinforced material. This study describes the microstructural development of Ti-6%Al-4%V milled with increasing concentrations of boron. Mechanical milling of Ti-6%Al-4%V powder produces a nanocrystalline material. MA of Ti-6%Al-4%V with boron results in the alloying of the two to form either a boride or an amorphous phase when the local concentration of boron is ∼ 50 at.%. During milling, the boron tends to remain near to its original particle form and in these boron-rich regions TiB is formed. Beyond these regions small amounts of boron (a few at.%) mix with the titanium matrix and reduce further the grain size of the titanium. An increase in the global concentration of boron increases the volume fraction of boride produced.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 2000