Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-19T07:14:19.609Z Has data issue: false hasContentIssue false

Revealing ordering and structural changes at glass transition

Published online by Cambridge University Press:  01 February 2013

Michael I. Ojovan*
Affiliation:
Department of Materials, Imperial College London, South Kensington Campus, Exhibition Road, London, SW7 2AZ, United Kingdom
Get access

Abstract

Ordering types in the disordered structure of amorphous materials and structural changes which occur at glass-liquid transition are discussed revealing medium range order and reduction of topological signature of bonding system.

Type
Articles
Copyright
Copyright © Materials Research Society 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Varshneya, A.K.. Fundamentals of inorganic glasses. Sheffield, Society of Glass Technology (2006).Google Scholar
IUPAC. Comp. Chem. Terminology. 66, 583, Royal Society of Chemistry, Cambridge (1997).Google Scholar
Jantzen, C.M., Brown, K.G., Pickett, J.B.. Int. J. Applied Glass Science, 1, 3862 (2010).10.1111/j.2041-1294.2010.00007.xCrossRefGoogle Scholar
Greaves, G. N.. J. Non-Cryst. Solids, 71, 203217 (1985).10.1016/0022-3093(85)90289-3CrossRefGoogle Scholar
Adams, S., Swenson, J.. Solid State Ionics, 175, 665669 (2004).10.1016/j.ssi.2004.08.038CrossRefGoogle Scholar
Bakai, A.S., Fischer, E.W.. J. Chem. Phys. 120, 5235 (2004)10.1063/1.1648300CrossRefGoogle Scholar
Medvedev, N.N., Geiger, A., Brostow, W.. J. Chem. Phys. 93, 8337 (1990).10.1063/1.459711CrossRefGoogle Scholar
Wool, R.P., J. Polym. Sci. Pol. Phys. 46, 2765 (2008).10.1002/polb.21596CrossRefGoogle Scholar
Stanzione, J.F. III, Strawhecker, K.E., Wool, R.P.. J. Non-Cryst. Solids, 357, 311319 (2011).10.1016/j.jnoncrysol.2010.06.041CrossRefGoogle Scholar
Ojovan, M.I., Lee, W.E.. J. Non-Cryst. Solids, 356, 25342540 (2010).10.1016/j.jnoncrysol.2010.05.012CrossRefGoogle Scholar
Angell, C.A., Rao, K.J.. J. Chem. Phys., 57, 470481 (1972).10.1063/1.1677987CrossRefGoogle Scholar
Ojovan, M.I.. Entropy, 10, 334364 (2008).10.3390/e10030334CrossRefGoogle Scholar
Park, S.Y., Stroud, D.. Phys. Rev. B, 2003: 67, 212202 (2003).10.1103/PhysRevB.67.212202CrossRefGoogle Scholar
Ojovan, M.I., Travis, K.P., Hand, R.J.. J. Phys.: Condens. Matter, 19, 415107, (2007).Google Scholar
Ozhovan, M.I.. J. Exp. Theor. Phys., 103, 819829 (2006).10.1134/S1063776106110197CrossRefGoogle Scholar
Ojovan, M.I., Lee, W.E.. J. Phys.: Condensed Matter, 18, 1150711520 (2006).Google Scholar
Mazurin, O.V., Gankin, Yu.V.. Glass Technology, 49 (5) 229233 (2008).Google Scholar
Kolokol, A.S. and Shimkevich, A.L., At. Energy, 98, 187190 (2005).10.1007/s10512-005-0191-9CrossRefGoogle Scholar
Ozhovan, M.I., J. Exp. Theor. Phys. 77, 939943 (1993).Google Scholar
Ojovan, M.I., Lee, W.E.. Metallurgical and Materials Transactions A, 42 (4), 837851 (2011).10.1007/s11661-010-0525-7CrossRefGoogle Scholar
Ojovan, M.I.. J. Clust. Sci., 23 (1), 3546 (2012).10.1007/s10876-011-0410-6CrossRefGoogle Scholar
Möbus, G., Ojovan, M., Cook, S., Tsai, J., Yang, G.. J. Nucl. Mater., 396, 264271 (2010).10.1016/j.jnucmat.2009.11.020CrossRefGoogle Scholar
Zheng, K. et al. ., Nature Communications, 1:24, 18 (2011).Google Scholar
Varnik, F., Henrich, O.. Phys. Rev. B 73, 174209 (2006).10.1103/PhysRevB.73.174209CrossRefGoogle Scholar
Henrich, O., Varnik, F., Fuchs, M.. J. Phys.: Condes. Matter 17, 36253630 (2005).Google Scholar
Ojovan, M.. Physics and Chemistry of Glasses, 53 (4) 143150 (2012).Google Scholar
Evteev, A.V., Kosilov, A.T., Levchenko, E.V.. J. Exp. Theor. Phys., 99, 522529 (2004).10.1134/1.1809680CrossRefGoogle Scholar
Ma, D., Stoica, A.D., Wang, X.-L.. Nature Materials, 8, 3034 (2009).10.1038/nmat2340CrossRefGoogle Scholar