Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-27T02:30:32.615Z Has data issue: false hasContentIssue false

Resistance Non-volatile Memory – RRAM

Published online by Cambridge University Press:  01 February 2011

Alex Ignatiev
Affiliation:
[email protected], University of Houston, Center for Advanced Materials, 4800 Calhoun Road, Houston, TX, 77204, United States
Naijuan Wu
Affiliation:
[email protected], University of Houston, Center for Advanced Materials, 4800 Calhoun Road, Houston, TX, 77204, United States
Xin Chen
Affiliation:
[email protected], University of Houston, Center for Advanced Materials, 4800 Calhoun Road, Houston, TX, 77204, United States
Yibo Nian
Affiliation:
[email protected], University of Houston, Center for Advanced Materials, 4800 Calhoun Road, Houston, TX, 77204, United States
Christina Papagianni
Affiliation:
[email protected], University of Houston, Center for Advanced Materials, 4800 Calhoun Road, Houston, TX, 77204, United States
Shangqing Liu
Affiliation:
[email protected], University of Houston, Center for Advanced Materials, 4800 Calhoun Road, Houston, TX, 77204, United States
John Strozier
Affiliation:
[email protected], University of Houston, Center for Advanced Materials, 4800 Calhoun Road, Houston, TX, 77204, United States
Get access

Abstract

Electric-pulse induced resistance (EPIR) change effect encompasses the reversible change of resistance of a thin oxide film under the application of short, low voltage pulses. The phenomenon is widely observed in complex and binary oxides, and is the basis for development of non-volatile resistance random access memory (RRAM). A variety of analytical techniques have been employed to understand the origin of the resistance change with recent data yielding a model incorporating oxygen ion/vacancy diffusion and pile-up near the interface region of the oxide at the impervious metal interface. Further efforts are still required to fine tune the model and apply it to the optimization of RRAM device development.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Liu, S. Q., Wu, N. J., and Ignatiev, A., Appl. Phys. Lett. 76(19), 2749 (2000).Google Scholar
2. Zhuang, W. W., Pan, W., Ulrich, B. D., Lee, J. J., Stecker, L., Burmaster, A., Evans, D. R., Hsu, S. T., Tajiri, M., Shimaoka, A., Inoue, K., Naka, T., Awaya, N., Sakiyama, K., Wang, Y., Liu, S. Q., Wu, N. J., Ignatiev, A., IEDM '02 Digest. International, 8-11 Dec. (2002) pp. 193196.Google Scholar
3. Tokura, Y., Physics Today, 56(7), 50 (2003).Google Scholar
4. Pinnow, C. U., and Mikolajick, T., J. Electrochem. Soc. 151(6), K13 (2004).Google Scholar
5. Dagotto, E., Science 309, 257 (2005).Google Scholar
6. Seo, S., Lee, M. J., Seo, D. H., Choi, S. K., Suh, D.-S., Joung, Y. S., Yoo, I. K., Byun, I. S., Hwang, I. R., Kim, S. H., and Park, B. H., Appl. Phys. Lett. 86, 093509 (2005).Google Scholar
7. Beck, A., Bednorz, J. G., Gerber, C., Rossel, C., and Widmer, D., Appl. Phys. Lett. 77, 139 (2000).Google Scholar
8. Tulina, N. A., Ionov, A. M., and Chaika, A. N., Physica (Amsterdam) C366, 23 (2001).Google Scholar
9. Rozenberg, M. J., Inoue, I. H., and Sanchez, M. J., Phys. Rev. Lett. 92, 178302 (2004).Google Scholar
10. Fujii, T., Kawasaki, M., Sawa, A., Akoh, H., Kawazoe, Y., and Tokura, Y., Appl. Phys. Lett. 86, 012107 (2005).Google Scholar
11. Szot, K., Speier, W., Bihlmayer, G., and Waser, R., Nat. Mater. 5, 312 (2006).Google Scholar
12. Tsui, S., Wang, Y. Q., Xue, Y. Y., and Chu, C. W., Appl. Phys. Lett. 89, 123502 (2006).Google Scholar
13. Chen, X., Wu, N. J., Strozier, J., and Ignatiev, A., Appl. Phys. Lett. 87, 233506 (2005).Google Scholar
14. Ju, H. L., Gopalakrishnan, J., Peng, J. L., Li, Q., Xiong, G. C., Venkatesan, T., and Greene, R.L., Phys. Rev. B 51(9), 6143 (1995).Google Scholar
15. Chen, F., Zhao, T., Fei, Y. Y., Liu, H. B., Chen, Z. H., Yang, G. Z., and Zhu, X. D., Appl. Phys. Lett. 80, 2889 (2002).Google Scholar
16. Tomioka, Y., Asamitsu, A., Kuwahara, H., Moritomo, Y., and Tokura, Y., Phys. Rev. B 53, R1689 (1996).Google Scholar
17. Sawa, A., Fujii, T., Kawasaki, M., and Tokura, Y., Appl. Phys. Lett. 85, 4073 (2004).Google Scholar
18. Nian, Y., Strozier, J., Wu, N. J., Chen, X., and Ignatiev, A., Phys. Rev. Lett. 98, 146403 (2007).Google Scholar
19. Huerth, S. H., Hallen, H. D., and Moeckly, B., Phys. Rev. B 67, 180506 (2003).Google Scholar
20. Glicksman, M. E., D.ffusion in Solids: Field theory, Solid-State Principles, and Applications (Wiley, New York, 2000).Google Scholar
21. Gramm, A., Zahner, Th., Spreitzer, U., Rossler, R., Pedarnig, J.D., Bauerle, D., and Lengfellner, H., Europhys. Lett., 49, 501(2000).Google Scholar