Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-25T15:16:53.156Z Has data issue: false hasContentIssue false

Residual Stress in GaAs Layer Grown on 4°-Off (100)Si by MBE

Published online by Cambridge University Press:  28 February 2011

T. Yao
Affiliation:
Electrotechnical Laboratory, Sakura-mura, Ibaraki 305, Japan
Y. Okada
Affiliation:
Electrotechnical Laboratory, Sakura-mura, Ibaraki 305, Japan
H. Kawanami
Affiliation:
Electrotechnical Laboratory, Sakura-mura, Ibaraki 305, Japan
S. Matsui
Affiliation:
Electrotechnical Laboratory, Sakura-mura, Ibaraki 305, Japan Science University of Tokyo, Noda, Chiba 278, Japan
A. Imagawa
Affiliation:
Electrotechnical Laboratory, Sakura-mura, Ibaraki 305, Japan Science University of Tokyo, Noda, Chiba 278, Japan
K. Ishida
Affiliation:
Electrotechnical Laboratory, Sakura-mura, Ibaraki 305, Japan Science University of Tokyo, Noda, Chiba 278, Japan
Get access

Abstract

Residual stress in molecular beam epitaxially (MBE) grown GaAs films on 4°-off (100)Si substrates is investigated with X-ray diffraction technique. It is experimentally confirmed that the GaAs lattice suffers tetragonal deformation with the c-axis being [100]. The GaAs lattice tilts by approximately 0.2° towards the tilted direction of the substrate. It is found that two-dimensional compressive stress dominates in GaAs films thinner than 0.3 μm in thickness, while two-dimensional tensile stress dominates in thicker films. The variation of the stress is understood in terms of a combination of misfit stress and thermal stress. The residual tensile stress is larger than 1 × 109 dyn/cm2 in the films thicker than I pm. The effect of the stress on the reliability of semiconductor laser diodes is discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Akiyama, M., Nishi, S. and Kaminishi, K., Surf. Sci. 174, 19 (1986).Google Scholar
[2] Fisher, R., Masselink, W.T., Klem, J., Henderson, T., McGlinn, T.C., Klein, M.V., Morkoc, H., Mazur, J.H. and Washburn, J., J. Appl. Phys. 58, 374 (1985).Google Scholar
[3] Nishi, S., Inomata, H., Akiyama, M. and Kaminishi, K., Jpn. J. Appl. Phys. 24, L391 (1984).Google Scholar
[4] Windhorn, T.H., Metze, G.M., Tsaur, B.Y. and Fan, J.C.C., Appl. Phys. Lett. 45, 309 (1984).Google Scholar
[5] Matsui, S., Imagawa, A., Kawanami, H., Okada, Y., Yao, T. and Ishida, K., in preparation.Google Scholar
[6] Okada, Y. and Tikumaru, Y., Appl. Phys. Lett. 56, 314 (1985).Google Scholar
[7] Nagai, H., J. Appl. Phys. 45, 3789 (1974).Google Scholar
[8] Igarashi, O., Jpn. J. Appl. Phys. 15, 1435 (1976).Google Scholar
[9] Matthews, J.W., Mader, S. and Light, T.B., J. Appl. Phys. 41, 3800 (1970).Google Scholar
[10] Yao, T., Jpn. J. Appl. Phys. 25, L544 (1986).Google Scholar
[11] Timoshenko, S., J. Opt. Soc. Am. 11, 233 (1925).Google Scholar
[12] Kamejima, T., Ishida, K. and Matui, J., Jpn. J. Appl. Phys. 16, 233 (1977).Google Scholar
[13] Goodwin, A.R., Kirkby, P.A., Davies, I.G.A. and Baulcomb, R.S., Appl. Phys. Lett. 34, 647 (1979).Google Scholar
[14] Turner, G.W., Diadiuk, V., Le, H.Q., Choi, H.K., Metze, G.M. and Tsaur, B-Y., MRS Proceedings Vol. 67, 181, ed. by Fan, J.C.C. and Poate, J.M. (1986).Google Scholar