Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-23T11:10:50.819Z Has data issue: false hasContentIssue false

Research Progress in the Resistance Switching of Transition Metal Oxides for RRAM Application: Switching Mechanism and Properties Optimization

Published online by Cambridge University Press:  31 January 2011

Qun Wang
Affiliation:
[email protected], Shanghai Institute of Ceramics, Chinese Academy of Sciences, State Key Laboratory of High Performance Ceramics & Superfine Microstructure, Shanghai, ShangHai, China
Xiaomin Li
Affiliation:
[email protected], Shanghai Institute of Ceramics, Chinese Academy of Sciences, State Key Laboratory of High Performance Ceramics & Superfine Microstructure, 1295 Ding Xi Road,, Shanghai, 200050, China
Lidong Chen
Affiliation:
[email protected], Shanghai Institute of Ceramics, Chinese Academy of Sciences, State Key Laboratory of High Performance Ceramics & Superfine Microstructure, Shanghai, ShangHai, China
Xun Cao
Affiliation:
[email protected], Shanghai Institute of Ceramics, Chinese Academy of Sciences, State Key Laboratory of High Performance Ceramics & Superfine Microstructure, Shanghai, ShangHai, China
Rui Yang
Affiliation:
[email protected], Shanghai Institute of Ceramics, Chinese Academy of Sciences, State Key Laboratory of High Performance Ceramics & Superfine Microstructure, Shanghai, ShangHai, China
Weidong Yu
Affiliation:
[email protected], Shanghai Institute of Ceramics, Chinese Academy of Sciences, State Key Laboratory of High Performance Ceramics & Superfine Microstructure, Shanghai, ShangHai, China
Get access

Abstract

Electric-induced resistance switching (EIRS) effect based on transition metal (TM) oxides, such as perovskite manganites (Pr1-xCaxMnO3, La1-xCaxMnO3) and binary oxides (NiO, TiO2 and CoO) etc, has attracted great interest for potential applications in next generation nonvolatile memory known as resistance random access memory (RRAM). Compared with other nonvolatile memories, RRAM has several advantages, such as fast erasing times, high storage densities, and low operating consumption. Up to date, the switching mechanism, property improvement and new materials exploitation are still the hotspots in RRAM research.

In this report, the main results of resistance switching of two kinds of TM oxides including La0.7Ca0.3MnO3 and TiO2 were presented. Based on the I-V characteristics, the field-direction dependence of resistance switching (RS) behavior, and the conduction process analysis, the EIRS mechanisms were studied in detail. For the La0.7Ca0.3MnO3 film, the EIRS mechanism was related to the carrier injected space charge limited current (SCLC) conduction controlled by the traps existing at the interface between top electrode and La0.7Ca0.3MnO3 film. The RS behavior is produced by the trapping/detrapping process of carriers under different voltages. For the TiO2 film, both unipolar and bipolar RS behavior can be obtained in our experiments. The interface controlled filamentary mechanism was proposed to explain the unipolar EIRS in nanocrystalline TiO2 thin films, while the bipolar RS behavior may be related to the charge trapping or detrapping effect. In addition, it was confirmed that the I-V sweeps in vacuum environment, the applying of asymmetry pulse pairs and the oxygen annealing of films can improve the endurance of the EIRS devices. Our researches will provide some meaningful clues to understanding the EIRS mechanism and some useful pathways for the development of RRAM devices.

Keywords

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Yoshida, C, Tsunoda, K, Noshiro, H and Sugiyama, Y, Appl. Phys. Lett. 91, 223510 (2007).Google Scholar
2 Baek I, G, Lee M, S, Seo, S, Lee M, J, Seo D, H, D-S, Suh, Park J, C, Park S, O, Kim H, S, Yoo I, K, U-In, Chung and Moon J, T, Tech. Dig. IEDM 587 C90 (2004).Google Scholar
3 Zhuang W, W, Ulrich, Pan W. Lee, B D Stecker, J J Burmaster A, L, Evans D, R, Hsu S, T, Tajiri, M, Shimaoka, A, Inoue, K, Naka, T, Awaya, N, Sakiyarma, K, Wang, Y, Liu S, Q, Wu N, J and Ignatiev, A, Tech. Dig. IEDM 193 C96 (2002).Google Scholar
4 Sawa, A., Fujii, T., Kawasaki, M., and Tokura, Y., Appl. Phys. Lett. 85, 4073 (2004).Google Scholar
5 Tsui, S., Baikolov, A., Cmaidalka, J., Sun, Y.Y., Wang, Y.Q., Xue, Y.Y., Chu, C.W., Chen, L., and Jacobson, A.J., Appl. Phys. Lett. 85, 317 (2004).Google Scholar
6 Fors, Rickard, Khartsey, Sergey I., and Grishin, Alexander M., Phys. Rev. B 71, 045305 (2005).Google Scholar
7 Rozenberg, M.J., Inoue, I.H., Sánchez, M.J., Appl. Phys. Lett. 88, 033510 (2006).Google Scholar
8 Odagawa, A., Sato, H., Inoue, I.H., Akoh, H., Kawasaki, M., and Tokura, Y., Phys. Rev. B 70, 224403 (2004).Google Scholar
9 Shang, D.S., Wang, Q., Chen, L.D., Dong, R., Li, X.M., and Zhang, W.Q., Phys. Rev. B 73, 245427 (2006).Google Scholar
10 Shang, D.S., Chen, L. D., Wang, Q., Zhang, W.Q., Wu, Z.H., and Li, X. M., Appl. Phys. Lett. 89, 172102 (2006).Google Scholar
11 Liu, S.Q., Wu, N.J., and Ignatiev, A., Appl. Phys. Lett. 76, 2749 (2000).Google Scholar
12 Inoue, I.H., Yasuda, S., Akinaga, H., and Takagi, H., Phys. Rev. B 77, 035105 (2008).Google Scholar
13 Baikalov, A., Wang, Y.Q., Shen, B., Lorenz, B., Tsui, S., Sun, Y.Y., Xue, Y.Y., and Chu, C.W., Appl. Phys. Lett. 83, 957 (2003).Google Scholar
14 Szot, Krzysztof, Speier, Wolfgang, Bihlmayer, Gustav and Waser, Rainer, Nature Mater.5, 312 (2006).Google Scholar
15 Meijer, G.I., Science 319, 1625 (2008).Google Scholar
16 Jooss, Ch., Hoffmann, J., Fladerer, J., Ehrhardt, M., Beetz, T., Wu, L., and Zhu, Y., Phys. Rev. B 77, 132409 (2008).Google Scholar
17 Yang, Yu Chao, Pan, Feng, Liu, Qi, Liu, Ming, and Zeng, Fei, Nano Letters, March 10, 2009 DOI: 10.1021/n1900006gGoogle Scholar
18 Choi, B. J., Jeong, D. S., Kim, S. K., Rohde, C., Choi, S., Oh, J. H., Kim, H. J., Hwang, C. S., Szot, K., Waser, R., Reichenberg, B., and Tiedke, S., J. Appl. Phys. 98, 033715 (2005).Google Scholar
19 Chang, W. Y., Lai, Y. C., Wu, T. B., Wang, S. F., Chen, F., and Tsai, M. J., Appl. Phys. Lett. 92, 022110 (2008).Google Scholar
20 Chae, S.C., Lee, J.S., Kim, S., Lee, S.B., Chang, S.H., Liu, C., Kahng, B., Shin, H., Kim, D.-W., Jung, C.U., Seo, S., Lee, M.-J., and Noh, T.W.: Adv. Mater. 20, 1154 (2008).Google Scholar
21 Rohde, C., Choi, B.J., Jeong, D.S., Choi, S., Zhao, J.S., and Hwang, C.S., Appl. Phys. Lett. 86, 262907 (2005).Google Scholar
22 Dong, Rui, Wang, Qun, Chen, Lidong, Chen, Tonglai, Li, Xiaomin, Appl. Phys. A, 80, 13 (2005).Google Scholar
23 Dong, R., Wang, Q., Chen, L. D., Shang, D. S., Chen, T. L., Li, X. M., and Zhang, W. Q., Appl. Phys. Lett. 86, 172107 (2005).Google Scholar
24 Shang, D S, Chen, L D, Wang, Q, Wu, Z H, Zhang, W Q and Li, X M, J. Phys. D: Appl. Phys. 40, 5373 (2007).Google Scholar
25 Shang, D. S., Chen, L.D., Wang, Q., Yu, W.D., Li, X.M., Sun, J. R., and Shen, B. G., J. Appl. Phys. 105, 063511 (2009).Google Scholar