Published online by Cambridge University Press: 01 February 2011
For the fabrication of bulk strained Si devices, a thin Si layer is deposited on a virtual substrate consisting of a several μm thick compositionally graded SiGe layer. A simpler approach utilizing H or He implantation to enhance relaxation of a thin SiGe film was recently reported. In this current work, hydrogen implantation is used to enhance the SiGe relaxation; and, relaxation beyond the previous reported limit is demonstrated. Experiments are performed on CVD deposited SiGe films with Ge fractions ranging from 20% to 40 % and thickness in the range of 100nm to about 500nm. After annealing at 800°C, relaxation of more than 80% is achieved. PMOS and NMOS devices are successfully fabricated and much enhanced hole and electron mobilities are demonstrated.