Hostname: page-component-848d4c4894-nmvwc Total loading time: 0 Render date: 2024-07-07T19:22:38.977Z Has data issue: false hasContentIssue false

Reactive Wetting Taxonomy

Published online by Cambridge University Press:  15 February 2011

R. M. Cannon
Affiliation:
Center for Advanced Materials, Lawrence Berkeley Lab., Berkeley, CA 94720
E. Saiz
Affiliation:
Center for Advanced Materials, Lawrence Berkeley Lab., Berkeley, CA 94720
A. P. Tomsia
Affiliation:
Center for Advanced Materials, Lawrence Berkeley Lab., Berkeley, CA 94720
W.C. Carter
Affiliation:
Ceramics Dept., NIST, Gaithersburg, MD 20899
Get access

Abstract

Contact angles and spreading rates of liquids on solids are oft characterized owing to the widespread importance of wetting. Particularly with dissimilar materials, such as liquid metals on ceramics, where wetting can be poor, additives that can induce various reactions often promote wetting, even if it preceeds the reaction. However, excessive or unwanted reaction can equally well be detrimental in other metallic or ceramic systems. Despite obvious needs, mechanisms of reactive wetting are poorly known.

An effort is described to categorize sessile or spreading drop situations having a potential for some degree of reaction and ways wherein the driving force for reaction can actually couple with or parallel that for fluid flow. Several categories where reactivity enhances or retards spreading are described for which the very existence typically depends upon kinetic or nucleation limitations; this includes defining situations in which metastable interfaces have a meaningful context and unique properties. Examples use pairs of inorganic materials, for which the solid may only rarely be truly inert.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Adamson, A. W., Physical Chemistry of Surfaces, 4th ed., J. Wiley & Sons, NY (1982).Google Scholar
2. DeGennes, P.-G., Rev. Mod. Phys., 57 827 (1985).Google Scholar
3. Kurkjian, C. & Kingery, W. D., J. Phys. Chem., 60 961 (1956). M. Humenik, Jr & W. D. Kingery, J. Am. Ceram. Soc., 37 18 (1954).Google Scholar
4. Naidich, Ju. V., Prog. Surf. Membr. Sci., 14 353 (1981).Google Scholar
5. Eremenko, V. N., Nadich, Yu. V. & Lavrinenko, I. A., Liquid Phase Sintering, Consultants Bureau, NY, pp. 1621 (1970).Google Scholar
6. Handwerker, C. A., “Diffusion-Induced Grain Boundary Migration in Thin Films”, in Diffusion Phenomena in Thin Films and Microelectronic Materials, eds. Gupta, D. & Ho, P., Noyes, Park Ridge, NJ pp. 245322 (1988). C. A. Handwerker, J. W. Cahn, D. N. Yoon & J. E. Blendell, “The Effect of Coherency Strain on Alloy Formation: Migration of Liquid Films”, in Diffusion in Solids: Recent Developments, ed. Murch and Dayanarda, TMS, Warrendale, PA (1985). Y. D. Song, S. T. Ahn & D. N. Yoon, Acta Metall., 33 1907 (1985).Google Scholar
7. Scriven, L. E. & Sternling, C. V., Nature, 187 [4733] 186 (1960).Google Scholar
8. Bailey, G. L. J. & Watkins, H. C., J. Inst. Metals, 80 57 (1951).Google Scholar
9. Forssberg, K. S. E., “Aspects of the Wettability of Refractory Materials”, in Science of Ceramics, eds. Brosset, C. & Knopp, E., Swedish Inst. for Silicate Research, pp. 6382 (1970). I. A. Aksay, M. S. Thesis, Univ. of California, Berkeley, CA, 1969.Google Scholar
10. Cline, R. W., Fulrath, R. M. & Pask, J. A., J. Am. Ceram. Soc., 44 423 (1961). R. B. Adams & J. A. Pask, 430.Google Scholar
11. Li, J. G., J. Am. Ceram. Soc., 75 3118 (1992).Google Scholar
12. Kritsalis, P., Merlin, V., Coudurier, L. & Eustathopoulos, N., Acta. Metall. Mater., 40 1167 (1992). P. Kritsalis, L. Coudurier and N. Eustathopoulos, J. Mater. Sci., 26 3400 (1991)Google Scholar
13. Nicholas, M., “The Strength of Alumina-Metal Alloy Interfaces”, in Science of Ceramics, eds. Brosset, C. and Knopp, E., Swedish Inst. for Silicate Research, pp. 377–91 (1970). M. G. Nicholas, T. M. Valentine & M. J. Waite, J. Mater. Sci., 15 2197 (1980). M. G. Nicholas & D. A. Mortimer, Mat. Sci. & Tech., 1 657 (1985).Google Scholar
14. Loehman, R. E. & Tomsia, A. P., Am. Ceram. Soc. Bull., 67 375 (1988).Google Scholar
15. Loehman, R. E. & Tomsia, A. P., J. Am. Ceram. Soc., 77 271 (1994).Google Scholar
16. Tomsia, A. P., Pask, J. A. & Loehman, R. E., “Wetting, Surface Energies, Adhesion and Interface Reaction Thermodynamics”, in ASM International Engineered Materials Handbook, vol 4 on “Ceramics and Glasses -Sect. 7, Joining”, pp. 482–92 (1991).Google Scholar
17. Espie, L., Drevet, B. & Eustathopoulos, N., Metall. and Mater. Trans., 25A 599 (1994).Google Scholar
18. Blake, T. B., “Dynamic Contact Angles and Wetting Kincetics”, in Wettability, ed. Berg, J. C., Marcel Dekker, NY (1993). S. F. Kistler, “Hydrodynamics of Wetting”Google Scholar
19. Cieslak, M. J., Perepezko, J. H., Kang, S. & Glicksman, M. E., eds., The Metal Science of Joining, The Minerals, Metals and Materials Society, Warrendale, PA (1992).Google Scholar
20. Yost, F. G., Hosking, F. M. & Frear, D. R., eds. The Mechanics of Solder Alloy Wetting and Spreading, Van Nostrand Reihhold, NY (1993).Google Scholar
21. Yost, F. G., Sandia National Lab., (private communication).Google Scholar
22. Sharps, P. R., Tomsia, A. P. & Pask, J. A., Acta Metall., 29 855 (1981).Google Scholar
23. Tomsia, A. P., unpublished work.Google Scholar
24. Aksay, I. A., Hoge, C. E. & Pask, J. A., J. Phys. Chem., 78 1178 (1974).Google Scholar
25. Yost, F. G. & Romig, A. D. Jr, Mat. Res. Soc. Symp. Proc., 108 385 (1988).Google Scholar
26. Herring, C., “Surface Tension as a Motivation for Sintering” in The Physics of Powder Metallurgy, ed. Kingston, W. E., McGraw-Hill, NY pp. 143–79 (1951). F. C. Larche & J. W. Cahn, Acta Metall., 33 331 (1985). R. M. Cannon & W. C. Carter, J. Am. Ceram. Soc., 72 C1550 (1989).Google Scholar
27. Halden, F. A. & Kingery, W. D., J. Phys. Chem., 59 557 (1955).Google Scholar
28. Cahn, J. W. & Hilliard, J. E., J. Chem. Phys., 28 258 (1958).Google Scholar
29. Saiz, E., to be published.Google Scholar
30. Mullins, W. W., J. Appl. Phys., 28 333 (1957).Google Scholar
31. Mullins, W. W., Acta Metall., 6 414 (1958).Google Scholar
32. Pesach, D. & Marmur, A., Langmuir, 3 519 (1987).Google Scholar
33. Marmur, A., Adv. Colloid Interface Sci., 19 75 (1983).Google Scholar
34. Gumbsch, P. & Daw, M. S., Phys. Rev. B, 44 3934 (1991).Google Scholar
35. Sternling, C. V. & Scriven, L. E., Amer. Inst. Chem. Eng. J., 5 514 (1959).Google Scholar
36. Mullins, W. W. & Sekerka, R. F., J. Appl. Phys., 34 323 (1963). J. Appl. Phys., 35 444 (1964).Google Scholar
37. Wagner, C., J. Electrochem. Soc., 103 571 (1956). M. Backhaus-Ricoult & H. Schmalzried, Ber. Bunsenges. Phys. Chem., 89 1323 (1985).Google Scholar
38. Asaro, R. J. & Tiller, W. A., Metal. Trans., 3 1789 (1972). M. A. Grinfeld, Sov. Phys. Dokl. 31 831 (1986). D. J. Srolovitz, Acta Metall., 37 621 (1988).Google Scholar
39. King, B. W., Tripp, H. P. & Duckworth, W. H., J. Am. Ceram. Soc., 42 504 (1959).Google Scholar
40. Cahn, J. W., Acta Metall., 39 2189 (1991).Google Scholar
41. Saiz, E., Tomsia, A. P., Loehman, R. E. & Ewsuk, K., J. Eur. Ceram. Soc., submitted (1994).Google Scholar
42. DeVincent, S. M. & Michal, G. M., Metall. Trans. A, 24A 53 (1993). K. Nogi, Y. Osugi & K. Ogino, Iron Steel Inst. Jpn., 30 64 (1990).Google Scholar
43. Boettinger, W. J., Handwerker, C. A. & Kaattner, U. R, “Reactive Wetting and Intermetallic Formation”, in ref 20 pp. 103–39 (1993).Google Scholar
44. Pask, J. A., Am. Ceram. Soc. Bull., 66 1578 (1987).Google Scholar