Published online by Cambridge University Press: 28 February 2011
In this paper the kinetics of initial nitridation of thermal oxides is studied by using rapid thermal nitridation of thin oxides. FTIR and AES were used to investigate the chemical properties of nitrided oxide films. The amount of the nitrogenincorporated in and the oxygen escaped from 100Å oxides has been characterized quantitatively as a function of RTN conditions. Results show that RTN at 1100° for 120s incorporates about 85% and 12% of the maximum nitrogen concentration value at oxide surface and bulk, respectively. The nitrogen pile up peak at interface can be seen after RTN at 1100°C with the time as short as 5 s. Study of the effects of the nitridation temperature and the original oxide film thickness indicates that the reaction species has permeated through oxides before effective replacement reaction takes place. The diffusion coefficient of the permeating species is estimated of the value larger than 40−13cm2/s.