Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-19T04:18:25.272Z Has data issue: false hasContentIssue false

Raman and Photoluminescence Studies of Undoped and Magnesium-Doped Gan Films on Sapphire

Published online by Cambridge University Press:  21 February 2011

Jaime A. Freitas Jr
Affiliation:
Sachs/Freeman Assoc. Inc., 1401 McCormick Dr., Landover, MD20785, Naval Research Laboratory: Contract #N00014–93-C-2227
M. Asif Khan
Affiliation:
APA Optics Inc., 2950 N.E. 84th Lane, Blaine, MN, 55434
Get access

Abstract

Room temperature Raman scattering measurements performed on undoped GaN films indicate that high crystalline quality wurtzite material has been deposited on the basal plane of sapphire. Photoluminescence study of these films show that thicker films (t > 4μm) are homogeneous along the growth direction. The PL spectra of Mg-doped films are dominated by an intense emission band around 3.1 eV associated with recombination processes involving donor-acceptor pairs.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. For a detailed review on III-V nitrides, see Strite, S. and Morkoç, H., J. Vac. Sc. Technol. B 10, 1237 (1992).Google Scholar
2. Khan, M.A., Kuznia, J.N., Van Hove, J.M., and Olson, D.T., Appl. Phys. Lett. 58, 526 (1991).Google Scholar
3. Khan, M.A., Olson, D.T., Kuznia, J.N., Carlos, W.E., and Freitas, J.A. Jr,., J. Appl. Phys. 74, 5901 (1993).Google Scholar
4. Carlos, W.E., Freitas, J.A. Jr., Khan, M.A., Olson, D.T., and Kuznia, J.N., Phy. Rev. B 48, 17878 (1993).Google Scholar
5. Glaser, E.R., Kennedy, T.A., Crookham, H.C., Freitas, J.A. Jr., Khan, M.A., Olson, D. T., and Kuznia, J.N., Appl. Phys. Lett. 63, 2673 (1993).Google Scholar
6. Khan, M.A., Skogman, R.A., Van Hove, J.M., Olson, D.T., and Kuznia, J.N., Appl. Phys. Lett. 60, 1366 (1992).Google Scholar
7. Amano, H., Kito, M., and Hiramatsu, K., Jpn. J. Appl. Phys. 28, L2112 (1989).Google Scholar
8. Khan, M.A., Kuznia, J.N., Van Hove, J.M., and Olson, D.T., Appl. Phys. Lett. 58, 526 (1991).Google Scholar
9. Burns, G., Dacol, F., Marinace, J.C., Scott, B.A., and Burstein, E., Appl. Phys. Lett. 22, 356 (1973).Google Scholar
10. Cingolani, A., Ferrara, M., Lugarà, M., and Scarmacio, G., Sol. St. Comm. 58, 823 (1983).Google Scholar
11. Dingle, R., Sell, D.D., Stokowski, S.E., Ilegems, M., Phys. Rev. B 4, 1211 (1971).Google Scholar
12. Grimmeis, H.G. and Monemar, B., J. Appl. Phys. 41, 4054.Google Scholar
13. Dingle, R. and Ileglems, M., Sol. St. Commun. 9, 175 (1971).Google Scholar
14. Carlos, W.E., Freitas, J.A. Jr,., Khan, M.A., Olson, D.T., and Kuznia, J.N. in Defects in Semiconductors 17, edited by Heinrich, H. and Jantsch, W., (Trans Tech Publications, Switzerland; Mat. Sc. Forum, 143–147, 1994), pp. 99104.Google Scholar
15. Ilegems, M. and Dingle, R., J. Appl. Phys. 44, 4234 (1973).Google Scholar