Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-27T02:31:39.334Z Has data issue: false hasContentIssue false

Quenching of the Magnetic Field Effect on the Photocurrent and Photocurrent Detected Magnetic Resonance in Conjugated Polymer-Fullerene Diodes

Published online by Cambridge University Press:  21 March 2011

M. C. Scharber
Affiliation:
Physiklalische Chemie, Johannes Kepler Universität Linz
C. J. Brabec
Affiliation:
Christian Doppler Labor für Plastiksolarzellen, Johannes Kepler Universität Linz
F. Padinger
Affiliation:
Quantum Solar Energy Linz, Johannes Kepler Universität Linz
N. S. Sariciftci
Affiliation:
Physiklalische Chemie, Johannes Kepler Universität Linz
Get access

Abstract

We have studied the effect of a magnetic field on the photocurrent of MDMO-PPV (poly(2-methoxy,5-(3',7'-dimethyloctyloxy)-1,4-phenylenevinylene) and MDMOPPV/fullerene diodes (plastic solar cells) and performed photocurrent detected magnetic resonance (PCDMR) experiments on these devices consisting of an active layer sandwiched between a low and a high workfunction metal electrode. Results clearly show that the magnetic field effect (MFE) on the photocuttent as well as PCDMR signals are quenched in conjugated polymer/fullerene composite devices in contrast to large signals observed in the pristine conjugated polymer devices. Photoinduced electron transfer from conjugated polymers onto fullerene is proposed to be responsible for this quenching.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Sariciftci, N. S., Smilowitz, L., Heeger, A. J., and Wudl, F., Science 258, 1474 (1992)Google Scholar
2. Dyakonov, V., Zoriniants, G., Scharber, M., Brabec, C. J., Janssen, R. A. J., Hummelen, J. C., Sariciftci, N. S., Phys. Rev. B59 (1999) 8019 Google Scholar
3. Vardeny, Z., Ehrenfreund, E., Shinar, J., Wudl, F., Phys. Rev. B 35 (1987) 2498 Google Scholar
4. Frankevich, E. L., Lymarev, A. A., Sokolik, I., Karasz, F. F., Blumstengel, S., Baughman, R. H., Hörhold, H. H., Phys. Rev. B 46 (1992) 9320 Google Scholar
5. Dyakonov, V., Gauss, N., Rösler, G., Karg, S., Rieß, W., Schwoerer, M., Chem. Phys. 189 (1994) 687zGoogle Scholar
6. Brabec, C. J., Padinger, F., Fromherz, T., N. S.Sariciftci to be submittedGoogle Scholar
7. Padinger, F., Diploma Thesis, Johannes Kepler University 1998 Google Scholar
8. Dyakonov, V., Frankevich, E., Chem. Phys. 227 (1998) 203 Google Scholar