Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-27T01:45:57.970Z Has data issue: false hasContentIssue false

QUATERNARY AMMONIUM ANTIMICROBIAL POLYMERS

Published online by Cambridge University Press:  18 July 2013

Abraham J. Domb
Affiliation:
Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel.
Nurit Beyth
Affiliation:
Department of Prosthodontics, Hebrew University - Hadassah School of Dental Medicine, Israel.
Shady Farah
Affiliation:
Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel.
Get access

Abstract

Polymers possessing antimicrobial activity have been used for self sterilization surfaces as well as agents for treating contaminated water. Cationic polymers based on quaternary ammonium or guanidine groups have shown high inherent antimicrobial activity where the activity is related to the disruption of the microorganism cell wall. A range of antimicrobial nanoparticles possessing active quaternary ammonium groups with one of the alkyl is a an octyl chain have been synthesized. These nanoparticles were incorporated in dental restoration compositions to form self sterile composites. Quaternary ammonium polyethyleneimine nanoparticles with N-octyl dimethyl residues, demonstrated high antibacterial effect.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Kenawy, E. R., J.Appl. Polym. Sci., 82(6), p. 13641374, (2001).CrossRefGoogle Scholar
Kenawy, E. R., Worley, S. D. and Broughton, R., Biomacromolecules 8(5), p. 13591384, (2007).CrossRefGoogle Scholar
Kenawy, E. R., Abdel-Hay, F. I., El-Raheem, A., El-Shanshoury, R. and El-Newehy, M. H., J. Controlled Release, 50(1-3), p. 145152, (1998).CrossRefGoogle Scholar
Tashiro, T., Macromol. Mater. Eng., 286(2), p. 6387, (2001).10.1002/1439-2054(20010201)286:2<63::AID-MAME63>3.0.CO;2-H3.0.CO;2-H>CrossRef3.0.CO;2-H>Google Scholar
Shih, I. L., Shen, M. H. and Van, Y.T., Bioresource Technol., 97(9), p. 11481159, (2006).CrossRefGoogle Scholar
Beyth, N., Yudovin-Farber, I., Perez-Davidi, M., Domb, A. J. and Weiss, E., PNAS, 107(51), p. 2203843285, (2010).CrossRefGoogle Scholar
Lin, J., Qiu, S., Lewis, K. and Klibanov, A. M., Biotechnol. Bioeng., 83(2), p. 168172, (2003).10.1002/bit.10651CrossRefGoogle Scholar
Hiraki, J., Fine Chem., 29, p. 2528, (2000).Google Scholar
Hiraki, J., J. Antibact. Antifungal Agents, 23, p. 349354, (1995).Google Scholar
Li, G. and Shen, J., Abstr. Papers Am. Chem. Soc., 216, p. U97U97, (1998).Google Scholar
Park, E. S., Kim, H. S., Kim, M. N. and Yoon, J. S., Eur. Polym. J., 40(12), p. 28192822, (2004).CrossRefGoogle Scholar
Imazato, S., Ebi, N., Takahashi, Y., Kaneko, T., Ebisu, S. and Russell, R., Biomaterials, 24(20), p. 36053609, (2003).CrossRefGoogle Scholar
Imazato, S., Kinomoto, Y., Tarumi, H., Ebisu, S., Tay, F. R., Dent. Mater. J., 19(4), p. 313319, (2003).CrossRefGoogle Scholar
Imazato, S., Dent. Mater. J., 28(1), p. 1119, (2009).10.4012/dmj.28.11CrossRefGoogle Scholar
Sashiwa, H. and Aiba, S.I., Prog. Polym. Sci., 29, p. 887908 (2004).CrossRefGoogle Scholar
Shi, Z. L., Neoh, K. G., Kang, E. T. and Wang, W., Biomaterials, 27(11), p. 24402449, (2006).CrossRefGoogle Scholar
Farah, S., Khan, W., Farber, I., Kesler-Shverob, D., Beyth, N., Weiss, E. and Domb, A. J. Polym. Adv. Technol., (2013).Google Scholar
Gao, B., J. Biomater. Sci. Polymer Ed., 18(5), p. 531544, (2007).CrossRefGoogle Scholar
Beyth, N., Yudovin-Farber, I., Bahir, R., Domb, A. J., Weiss, E., Biomaterials, 27(21), p. 39954002, (2006).CrossRefGoogle Scholar
Beyth, N., Yudovin-Farber, I., Domb, A. J., and Weiss, E. I., Dent. Mater. J., (2008).Google Scholar