No CrossRef data available.
Published online by Cambridge University Press: 01 February 2011
In this work, an individual Ge island on top of silicon dioxide layer has been charged by a conductive EFM tip and quantitatively characterized at room temperature. Electrons or holes were successfully injected and were trapped homogenously in the isolated nano-scale Ge island. In order to quantitatively study these trapped charges, a truncated capacitor model was used to approximate the real capacitance between the tip and island surface. The analytical expression of the quantity of trapped charges in isolated Ge island as a function of the EFM phase signal was deduced. Applying a tip bias for -7V during 30 seconds leads to an injection about 800 electrons inside an individual Ge island.