No CrossRef data available.
Article contents
Properties of Nanocrystalline 3C-SiC:H and SiC:Ge:H Films Deposited at Low Substrate Temperatures
Published online by Cambridge University Press: 01 February 2011
Abstract
We have investigated properties of nanocrystalline hydrogenated cubic silicon carbide (nc-3C-SiC:H) and silicon carbide: germanium alloy (nc-SiC:Ge:H) films deposited by hot-wire chemical vapor deposition (HWCVD) at low temperatures of about 300°C. we found that the density of charged defects was strongly influenced by grain size of the films. In-situ doping into nc-3C-SiC:H films was also carried out. N-type nc-3C-SiC:H films were successfully deposited by using phosphine (PH3) and hexamethyldisilazane (HMDS) as dopants. We found that HMDS is an effective n-type dopant for low temperature deposition of nc-3C-SiC:H films by HWCVD. For the deposition of p-type nc-3C-SiC:H with trimethylaluminum (TMA), it was found that the substrate temperature of above 300°C is required to activate the acceptors. We added dimethylgermane (DMG) into mixture of MMS and H2 to prepare nc-SiC:Ge:H films. The nc-SiC:Ge:H films with Ge mole fraction of 1.9% were successfully deposited.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 2006