No CrossRef data available.
Published online by Cambridge University Press: 21 February 2011
The deposition of in situ phosphorus doped silicon films was performed using disilane (Si2H6) instead of monosilane (SiH4) as the silicon source gas. The negative aspects of in situ doping with phosphine, namely low deposition rates and poor across wafer uniformity, were to a large extent eliminated. Haze-free polycrystalline films were deposited at ∼60 Å-min1 with less than 5% radial thickness variation over a 100 mm wafer. However, the temperature suitable for depositing films using Si2H6 was shifted downward from that used for SiH4 and similarly, the conditions for good quality (haze-free)films were adjusted. Within specific temperature ranges, varying the gas pressure, flow,and Si2H6 to PH3 ratio resulted in the formation of oneof three types of haze. The films produced had unusually low resistivities of ∼770 μohm-cm after furnace annealing at 850ºC for 1800s. A 20 nm thick surface layer of amorphous silicon oxide was revealed during transmission electron microscopy (TEM) examination of annealed films. Although this oxide layer was undoped, the phosphorus gradient, measured by energy dispersive x-ray analysis (EDX) and secondary ion mass spectroscopy (SIMS), increased towards the surface of the polycrystalline film, suggesting that dopant was diffusing to the surface. A matrix involving different annealing and capping layers was conducted to investigate this phenomenon further. Extremely large grains resulted when a capping layer of SiO2 was deposited prior to rapid thermalannealing (RTA). An autodoping effect was observed when another capping layer, such as undoped polycrystalline silicon, was used.