Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-27T01:37:24.676Z Has data issue: false hasContentIssue false

Progress in Chromogenic Materials and Devices: New Data on Electrochromics and Thermochromics

Published online by Cambridge University Press:  15 February 2013

C. G. Granqvist
Affiliation:
Department of Engineering Sciences, The Ångström Laboratory, Uppsala University, P. O. Box 534, SE-75121 Uppsala, Sweden
S.-Y. Li
Affiliation:
Department of Engineering Sciences, The Ångström Laboratory, Uppsala University, P. O. Box 534, SE-75121 Uppsala, Sweden
İ. Bayrak Pehlivan
Affiliation:
Department of Engineering Sciences, The Ångström Laboratory, Uppsala University, P. O. Box 534, SE-75121 Uppsala, Sweden
G. A. Niklasson
Affiliation:
Department of Engineering Sciences, The Ångström Laboratory, Uppsala University, P. O. Box 534, SE-75121 Uppsala, Sweden
Get access

Abstract

Electrochromic (EC) and thermochromic (TC) materials are of much interest for “smart” windows which combine energy efficiency with the provision of indoor comfort. This paper summarizes results from several recent studies related to nanoparticles of transparent and electrically conducting ITO (i.e., In2O3:Sn) and of thermochromic VO2. Specifically, we consider (i) the use of ITO nanoparticles in polaronic EC devices in order to suppress near-infrared solar transmittance, (ii) performance limits for plasmonic EC devices embodying ITO nanoparticles, and (iii) ITO-VO2-based nanocomposites with joint low thermal emittance and TC properties, and with Mg-doping of the VO2 as a means for boosting the luminous transmittance. Both experimental and theoretical results are presented.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Smith, G. B. and Granqvist, C. G., Green Nanotechnology: Solutions for Sustainability and Energy in the Built Environment (CRC Press, Boca Raton, 2010).CrossRefGoogle Scholar
Lampert, C. M. and Granqvist, C. G., Large-Area Chromogenics: Materials and Devices for Transmittance Control (SPIE – The International Society for Optical Engineering, Bellingham, WA, 1990), SPIE Institutes for Advanced Optical Technologies, Vol. IS4.Google Scholar
Pehlivan, İ. Bayrak, Runnerstrom, E. L., Li, S.-Y., Niklasson, G. A., Milliron, D. J. and Granqvist, C. G., Appl. Phys. Lett. 100, 241902 (2012).CrossRefGoogle Scholar
Li, S.-Y., Niklasson, G. A. and Granqvist, C. G., Appl. Phys. Lett. 101, 071903 (2012).CrossRefGoogle Scholar
Li, S.-Y., Niklasson, G. A. and Granqvist, C. G., Appl. Phys. Lett. 99, 131907 (2011).CrossRefGoogle Scholar
Hu, S., Li, S.-Y., Ahuya, R., Granqvist, C. G., Hermansson, K., Niklasson, G. A. and Scheicher, R. H., Appl. Phys. Lett. 101, 201902 (2012).Google Scholar
Granqvist, C. G., Handbook of Inorganic Electrochromic Materials (Elsevier, Amsterdam, The Netherlands, 1995).Google Scholar
Niklasson, G. A. and Granqvist, C. G., J. Mater. Chem. 17, 127 (2007).CrossRefGoogle Scholar
Granqvist, C. G., Sol. Energy Mater. Sol. Cells 99, 1 (2012).CrossRefGoogle Scholar
Pehlivan, İ. Bayrak, Marsal, R., Georén, P., Granqvist, C. G. and Niklasson, G. A., J. Appl. Phys. 108, 074102 (2010).CrossRefGoogle Scholar
Pehlivan, İ. Bayrak, Georén, P., Marsal, R., Granqvist, C. G. and Niklasson, G. A., Electrochim. Acta 57, 201 (2011).CrossRefGoogle Scholar
Pehlivan, İ. Bayrak, Marsal, R., Granqvist, C. G., Niklasson, G. A. and Georén, P., Sol. Energy Mater. Sol. Cells 94, 2399 (2010).CrossRefGoogle Scholar
Pehlivan, İ. Bayrak, Granqvist, C. G., Marsal, R., Georén, P. and Niklasson, G. A., Sol. Energy Mater. Sol. Cells 98, 465 (2012).CrossRefGoogle Scholar
Llordes, A., Hammack, A. T., Buonsanti, R., Tangirala, R., Aloni, S., Helms, B. A. and Milliron, D. J., J. Mater. Chem. 21, 11631 (2011).CrossRefGoogle Scholar
Wyszecki, G. and Stiles, W. S., Color Science: Concepts and Methods, Quantitative Data and Formulae, 2nd ed. (Wiley, New York, 2000).Google Scholar
ASTM G173-03 Standard Tables of Reference Solar Spectral Irradiances: Direct Normal and Hemispherical on a 37° Tilted Surface, Annual Book of ASTM Standards (American Society for Testing and Materials, Philadelphia, PA, 2008); Vol. 14.04.Google Scholar
Maxwell-Garnett, J. C., Phil. Trans. R. Soc. London, Ser. A, 203, 385 (1904); 205, 237(1906).Google Scholar
Bruggeman, D. A. G., Ann. Phys. (Leipzig) 24, 636 (1935).CrossRefGoogle Scholar
Hamberg, I. and Granqvist, C. G., J. Appl. Phys. 60, R123 (1986).CrossRefGoogle Scholar
Lindhard, J., Kgl. Danske Videnskab. Selskab Mat.-Fys. Medd. 28, No. 8 (1954).Google Scholar
Hubbard, J., Proc. R. Soc. London, Ser. A, 243, 336 (1957).Google Scholar
Garcia, G., Buonsanti, R., Runnerstrom, E. L., Mendelsberg, R. J., Llordes, A., Anders, A., Richardson, T. J. and Milliron, D. J., Nano Lett. 11, 4415 (2011).CrossRefGoogle Scholar
Buonsanti, R., Llordes, A., Aloni, S., Helms, B. A. and Milliron, D. J., Nano Lett. 11, 4706 (2011).CrossRefGoogle Scholar
Granqvist, C. G., Sol. Energy Mater. Sol. Cells 91, 1529 (2007).CrossRefGoogle Scholar
Jin, Z.-C., Hamberg, I. and Granqvist, C. G., J. Appl. Phys. 64, 5117 (1988).CrossRefGoogle Scholar
Stjerna, B., Olsson, E. and Granqvist, C. G., J. Appl. Phys. 76, 3797 (1994).CrossRefGoogle Scholar
Li, S.-Y., Niklasson, G. A. and Granqvist, C. G., Thin Solid Films 520, 3823 (2012).CrossRefGoogle Scholar
Morin, F. J., Phys. Rev. Lett. 3, 34 (1959).CrossRefGoogle Scholar
Goodenough, J. B., J. Solid State Chem. 3, 490 (1971).CrossRefGoogle Scholar
Li, S.-Y., Niklasson, G. A. and Granqvist, C. G., J. Appl. Phys. 108, 063525 (2010).CrossRefGoogle Scholar
Li, S.-Y., Niklasson, G. A. and Granqvist, C. G., J. Appl. Phys. 109, 113515 (2011).CrossRefGoogle Scholar
Kang, L., Gao, Y., Chen, Z., Du, J., Zhang, Z. and Luo, H., Sol. Energy Mater. Sol. Cells 94, 2078 (2010).CrossRefGoogle Scholar
Kang, L., Gao, Y., Luo, H., Wang, J., Zhu, B., Zhang, Z., Du, J., Kanehira, M. and Zhang, Y., Sol. Energy Mater. Sol. Cells 95, 3189 (2011).CrossRefGoogle Scholar
Mlyuka, N. R., Niklasson, G. A. and Granqvist, C. G., Appl. Phys. Lett. 95, 171909 (2009).CrossRefGoogle Scholar
Verleur, H. W., Barker, A. S. Jr., and Berglund, C. N., Phys. Rev. 172, 788 (1968).CrossRefGoogle Scholar
Qazilbash, M. M., Burch, K. S., Whisler, D., Shrekenhamer, D., Chae, B. G., Kim, H. T. and Basov, D. N., Phys. Rev. B 74, 205118 (2006).CrossRefGoogle Scholar
Luo, Z., Wu, Z., Xu, X., Wang, T. and Jiang, Y., J. Vac. Sci. Technol. A 28, 595 (2010).CrossRefGoogle Scholar
Conti, T. G., Chiquito, A. J., da Silva, R. A., Longo, E. and Leite, E. R., J. Am. Ceram. Soc. 93, 3862 (2010).CrossRefGoogle Scholar
Adachi, A. and Asahi, T., J. Mater. Res. 27, 965 (2012).CrossRefGoogle Scholar
Guo, C., Yin, S. and Sato, T., J. Am. Ceram. Soc. 95, 1634 (2012).CrossRefGoogle Scholar
Schelm, S. and Smith, G. B., Appl. Phys. Lett. 82, 4346 (2003).CrossRefGoogle Scholar
Schelm, S., Smith, G. B., Garrett, P. D. and Fisher, W. K., J. Appl. Phys. 97, 124314 (2005).CrossRefGoogle Scholar
Takeda, H., Kuno, H. and Adachi, K., J. Am. Ceram. Soc. 91, 2897 (2008).CrossRefGoogle Scholar
Adachi, K., Miratsu, M. and Asahi, T., J. Mater. Res. 25, 510 (2010).CrossRefGoogle Scholar
Dattoli, E. N. and Lu, W., MRS Bull. 36, 782 (2011).CrossRefGoogle Scholar