Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-17T20:12:25.775Z Has data issue: false hasContentIssue false

Photonic Quasiperiodic Multilayers of Porous Silicon

Published online by Cambridge University Press:  01 February 2011

R. Nava
Affiliation:
Instituto de Investigaciones en Materiales, UNAM, A.P. 70–360, 04510, México D.F., MEXICO
J. A. del Río
Affiliation:
Centro de Investigación en Energía, UNAM, A.P. 34, 62580 Temixco, Mor., MEXICO
J. C. Alonso
Affiliation:
Instituto de Investigaciones en Materiales, UNAM, A.P. 70–360, 04510, México D.F., MEXICO
C. Wang
Affiliation:
Instituto de Investigaciones en Materiales, UNAM, A.P. 70–360, 04510, México D.F., MEXICO
Get access

Abstract

Porous silicon is an efficient photo- and electro-luminescence material and represents a promising candidate for opto-electronic applications. In the last years, porous silicon multilayers with a high enough refractive index contrast have been obtained. In this work, we study the light transmission in Fibonacci multilayers made of porous silicon. The theoretical reflectance spectra are compared with experimental data, observing a good agreement, even though they are extremely fragile when the number of quasiperiodic layers increases. The photoluminescence spectra show evidences of the quasiperiodic structure and in particular, the observed enhancement in comparison with that of single porous silicon layer could be due to the quasiperiodicity.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Joannopoulos, J., Photonic Crystals (Princeton University Press, 1995).Google Scholar
[2] Kohmoto, M., Sutherland, B., and Iguchi, K., Phys. Rev. Lett. 58, 2436 (1987).Google Scholar
[3] Gellermann, W., Kohmoto, M., Sutherland, B., and Taylor, P. Phys. Rev. Lett. 72, 633 (1994).Google Scholar
[4] Bisi, O., Surf. Sci. Rep. 38, 1 (2000).Google Scholar
[5] dal Negro, L., et al., Phys. Rev. Lett. 90, 055501 (2003).Google Scholar
[6] Agarwal, V. and del Río, J.A., Appl. Phys. Lett. 82, 1512 (2003).Google Scholar
[7] Bellet, D. and Canham, L., Adv. Mater. 10, 487 (1998)Google Scholar
[8] Born, M. and Wolf, E., Principles of Optics, 3rd. edition (Pergamon Press, 1965).Google Scholar
[9] Nava, R., Agarwal, V., del Río, J. A. and Wang, C., J. non Crystalline Solids 329, 140 (2003).Google Scholar
[10] Koshida, N., et. al, Appl. Phys. Lett. 63, 2774 (1993).Google Scholar
[11] Zhu, S., Zhu, Y., and Ming, N., Science 278, 843 (1997).Google Scholar