Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-27T02:36:30.800Z Has data issue: false hasContentIssue false

Photocarrier Radiometric Lifetime Measurements of Intrinsic Amorphous-Crystalline Silicon Heterostructure

Published online by Cambridge University Press:  01 February 2011

Keith R Leong
Affiliation:
Electrical and Computer Engineering, University of Toronto, 10 Kings College Road, Toronto, Ontario, M5S 3G4, Canada
Andreas Mandelis
Affiliation:
[email protected], University of Toronto, Electrical and Computer Engineering, 10 Kings College Road, Toronto, Ontario, M5S 3G4, Canada
Nazir P Kherani
Affiliation:
[email protected], University of Toronto, Electrical and Computer Engineering, 10 Kings College Road, Toronto, Ontario, M5S 3G4, Canada, 416 946 7372, 416 971 3020
Stefan Zukotynski
Affiliation:
[email protected], University of Toronto, Electrical and Computer Engineering, 10 Kings College Road, Toronto, Ontario, M5S 3G4, Canada
Get access

Abstract

Intrinsic hydrogenated amorphous silicon films were deposited by the DC saddle field system on crystalline silicon wafers. The substrate temperature of the amorphous film, crystalline silicon surface cleaning schemes, and the native oxide etchant were varied. The transport parameters of the amorphous-crystalline silicon heterostructures were evaluated by Photocarrier Radiometric (PCR) lifetime measurements. PCR bulk lifetime estimates were obtained using the quinhydrone in methanol solution to passivate the crystalline silicon surface. We present the effectiveness of the PCR system in evaluating different surface passivation schemes.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Sakata, H., Nakai, T., Baba, T., Taguchi, M., Tsuge, S., Uchihashi, K., Kiyama, S., Twenty-Eighth IEEE Photovoltaic Specialists Conference, (2000), p. 7.Google Scholar
2. Wang, T. H., Iwaniczko, E., Page, M. R., Levi, D. H., Yan, Y., Branz, H. M., Wang, Q., Thin Solid Films, 501, 284, (2006)Google Scholar
3. Mandelis, A., Batista, J., and Shaughnessy, D., Phys. Rev. B., 67, 205208, (2003)Google Scholar
4. Mandelis, A., Diffusion-Wave Fields: Mathematical Models and Greens Functions. Springer-Verlag, New York, Ch. 9, 2001.Google Scholar
5. Batista, J., Mandelis, A. and Shaughnessy, D., Appl. Phys. Lett. 82, 4077 (2003).Google Scholar
6. Harry, M. and Zukotynski, S., J. Vac. Sci. Tech. A, 9, 496, (1991)Google Scholar
7. Verhaverbeke, S., Messoussi, Rochidi, Morinaga, Hitoshi and Ohmi, Tadahiro, in Ultraclean Semiconductor Processing Technology and Surface Chemical Cleaning and Passivation. Symposium (1995), 386, p. 3.Google Scholar
8. Herbots, N., Shaw, J. M., Hurst, Q. B., Grams, M. P., Culbertson, R. J., Smith, D. J., Atluri, V., Zimmerman, P., Queeney, K. T., Mater. Sci. and Eng. B87, 303, (2001)Google Scholar
9. Heyns, M., Bearda, T., Cornelissen, I., Gendt, S. De, Loewenstein, L., Mertens, P., Mertens, S., Meuris, M., Schaekers, M., Teerlinck, I., Vos, R., Wolke, K., in Cleaning Technology in Semiconductor Device Manufacturing. Proceedings of the Sixth International Symposium, Electrochemical Society Proceedings (2000), vol. 99–36, p. 3.Google Scholar
10. Dorkel, J. M. and Leturcq, Ph., Sol. State Elec. 24, 821, (1981)Google Scholar
11. Takato, H., Sakata, I., and Shimokawa, R., Jap. J. Appl. Phys. 41, L870, (2002)Google Scholar