Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-20T03:47:02.052Z Has data issue: false hasContentIssue false

Phosphorus and Boron Implantation into (100) Germanium

Published online by Cambridge University Press:  17 March 2011

Y. S. Suh
Affiliation:
Materials Science and Engineering, New Jersey Institute of Technology, University Heights, Newark, NJ 07102
M. S. Carroll
Affiliation:
Agere Systems, Allentown PA 18109 (current address: Sandia National Laboratories, P.O. Box 5800, M.S. 1077, Albuquerque, NM 87185)
R. A. Levy
Affiliation:
Materials Science and Engineering, New Jersey Institute of Technology, University Heights, Newark, NJ 07102
A. Sahiner
Affiliation:
Evans East, East Windsor NJ 08520 (current address: Department of Physics, Seton Hall University, South Orange, NJ 07079)
C. A. King
Affiliation:
Noble Device Technologies, Newark, NJ 07103
Get access

Abstract

Boron and phosphorus were implanted into (100) Ge with energies ranging from 20-320 keV and doses of 5×1013 to 5×1016 cm−2. The as-implanted and annealed dopant profiles were examined using secondary ion mass spectrometry (SIMS) and spreading resistance profiling (SRP). The first four moments were extracted from the as-implanted profile for modeling with Pearson distributions over the entire energy range. The samples were annealed at 400, 600, or 800°C in nitrogen ambient. The dopant activation and diffusion were also examined and it was found that p-type sheet resistances immediately after boron implantation as low as 18 ohms/sq could be obtained without subsequent annealing.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Chui, C. O., Kim, H., Chi, D., Triplett, B. B., McIntyre, P. C., and Saraswat, K. C., IEDM Tech. Dig. 437 (2002).Google Scholar
2. Jones, R. E., Thomas, S. G., Bharatan, S., Thoma, R., Jasper, C., Zirkle, T., Edwards, N. V., Liu, R., Wang, X. D., Xie, Q., Rosenblad, C., Ramm, J., Isella, G., Känel, H. von, Oh, J., and Campbell, J. C., IEDM Tech. Dig. 793 (2002).Google Scholar
3. Uppal, S., Willoughby, A. F. W., Bonar, J. M., Evans, A. G. R., Cowern, N. E. B., Morris, R., and Dowsett, M. G., J. Appl. Phys. 90, 4293 (2001).Google Scholar
4. Jones, K. S. and Haller, E. E., J. Appl. Phys. 61, 2469 (1987).Google Scholar
5. Uppal, S., Willoughby, A. F. W., Bonar, J. M., Evans, A. G. R., Cowern, N. E. B., Morris, R., and Dowsett, M. G., Physica B 308–310, 525 (2001).Google Scholar
6. Glazov, V. M. and Zemskov, V. S., Physicochemical Principles of Semiconductor Doping, (Israel Program for Scientific Translations, Jerusalem, 1968), p.119, p.140.Google Scholar
7. Ziegler, J. F., Biersack, J. P. and Littmark, U., The Stopping and Range of Ions in Solids, (Pergamon, New York, 1985).Google Scholar
8. Ashworth, D. G., Oven, R., and Mundin, B., J. Phys. D. 23, 870 (1990).Google Scholar
9. Ahmed, S., Barbero, C. J., Sigmon, T. W., and Erickson, J. W., J. Appl. Phys. 77, 6194 (1995).Google Scholar
10. Winterbon, K. B., Appl. Phys. Lett. 42, 205 (1983).Google Scholar
11. Suh, Y. S., Levy, R. A., Caroll, M. S., King, C. A., and Sahiner, A., “Modeling of boron and phosphorus implantation into (100) germanium,” submitted to J. Appl. Phys. (2004).Google Scholar
12. Sze, S. M. and Irvin, J. C., Solid-State Electron. 11, 599 (1968).Google Scholar
13. Chui, C. O., Gopalakrishnan, K., Griffin, P. B., Plummer, J. D., and Saraswat, K. C., Appl. Phys. Lett. 83, 3275 (2003).Google Scholar
14. Stolk, P. A., Gossmann, H. -J., Eaglesham, D. J., Jacobson, D. C., Rafferty, C. S., Gilmer, G. H., Jaraíz, M., Poate, J. M., Luftman, H. S., and Haynes, T. E., J. Appl. Phys. 81, 6031 (1997).Google Scholar
15. Sze, S. M., VLSI Technology, 2nd ed. (Mcgraw-Hill, New York, 1988), p. 294.Google Scholar
16. Sze, S. M., Physics of Semiconductor Devices, 2nd ed. (Wiley-Interscience, New York, 1981), p. 69.Google Scholar