Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-27T02:09:30.698Z Has data issue: false hasContentIssue false

Passive Isolators Based On Barium Ferrite Sputtered Films

Published online by Cambridge University Press:  01 February 2011

M. Le Berre
Affiliation:
Lab. Physique de la Matiere, UMR CNRS 5511, INSA de Lyon, 7 Av. Capelle, 69621 Villeurbanne Cedex, France.
S. Capraro
Affiliation:
DIOM, UJM, 23 rue du Dr. Michelon, 42023 Saint-Etienne Cedex 2, France.
J. P. Chatelon
Affiliation:
DIOM, UJM, 23 rue du Dr. Michelon, 42023 Saint-Etienne Cedex 2, France.
H. Joisten
Affiliation:
CEA- LETI, 17 Rue des Martyrs, 38041 Grenoble Cedex, France.
T. Rouiller
Affiliation:
DIOM, UJM, 23 rue du Dr. Michelon, 42023 Saint-Etienne Cedex 2, France.
B. Bayard
Affiliation:
DIOM, UJM, 23 rue du Dr. Michelon, 42023 Saint-Etienne Cedex 2, France.
D. Barbier
Affiliation:
Lab. Physique de la Matiere, UMR CNRS 5511, INSA de Lyon, 7 Av. Capelle, 69621 Villeurbanne Cedex, France.
J. J. Rousseau
Affiliation:
Lab. Physique de la Matiere, UMR CNRS 5511, INSA de Lyon, 7 Av. Capelle, 69621 Villeurbanne Cedex, France.
Get access

Abstract

Ferrites have magnetic properties suitable for electronic applications, especially in the microwave range (circulators and isolators). Hexagonal ferrite, such as barium ferrite (BaFe12O19 or BaM), are of great interest for microwave device applications because of their large resistivity and high permeability at high frequencies.

This contribution focuses on BaM films, 1 to 10 microns thick, which were deposited under optimized conditions by RF magnetron sputtering on alumina or silicon substrates. In order to crystallize the films that were amorphous after deposition, a post deposition annealing at 800°C was implemented. Optimized samples presented a good crystallization, a smooth surface and no cracks. The films were either randomly oriented or showed slight preferential orientations among the crystallographic planes (101), (200), (206), (102), (110) and (205) when the substrates were heated up to 400°C during the deposition. Ba, Fe and O depth profiles obtained by Secondary Ion Mass Spectroscopy (SIMS) showed that the films have a good in-depth uniformity. The magnetic properties of BaM films determined by VSM, showed that the optimized coercive force and the saturation magnetization reached 330 kA/m and about 500 mT respectively. These values are closed to that of the bulk BaM.

Isolators were then realized using patterning of coplanar metallic lines with standard lift-off technique. The slots and the central width were set to 300 μm, gold was used for the lines. First results on transmission coefficients showed a non reciprocal effect, which reaches 3.3 dB/cm at 50 GHz. This proved that such a component behaves like an isolator in the 50 GHz band.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

BIBLIOGRAPHY

1. Matsuoka, M., Naoe, M. and Hoshi, Y., J. Appl. Phys. 57, 4040 (1985).Google Scholar
2. Yuan, M. S., Glass, H.L., Adkins, L.R., Appl. Phys. Lett. 53, 340 (1988).Google Scholar
3. Lacroix, E., Gerard, P., Marest, G., Dupuy, M., J. Appl. Phys. 69, 4770 (1991).Google Scholar
4. Morisako, A., Matsumoto, M., Naoe, M., J. Magn. Magn. Mater. 193, 110 (1999).Google Scholar
5. Sui, X., Kryder, M.H., Appl. Phys. Lett. 63, 1582 (1993).Google Scholar
6. Wee, A.T.A., Wang, J.P., Huan, A.C.H., Tan, L.P., Gopalakrishnan, R., Tan, K.L., IEEE Trans. Magn. 33, 2986 (1997).Google Scholar
7. Li, J., Sinclair, R., Rosenblum, S.S., Hayashi, H., J. Magn. Magn. Mater. 153, 246 (1996).Google Scholar
8. Kryder, M.H., Scherge, M., Sui, X., Snyder, J.E., Harris, V.G., Koon, N.C., J. Magn. Magn. Mater. 155, 132 (1996).Google Scholar
9. Lisfi, A., Lodder, J.C., de Haan, P., Smithers, M.A., Roesthuis, F.J.G., IEEE Trans. Magn. 34, 1654 (1998).Google Scholar
10. Huang, F., Wolfgang, J.J., Le, T.M., Lambeth, D.N., Stancil, D.D., IEEE Trans. Magn. 31, 3826 (1995).Google Scholar
11. Kwak, B.S., Zhang, K., Boyd, E.P., Erbil, A. and Wilkens, B.J., J. Appl. Phys. 69, 767 (1991).Google Scholar
12. Kamansanan, M.N., Chandra, S., Joshi, P.C. and Mansingh, A., Appl. Phys. Lett. 59, 3547 (1991).Google Scholar
13. Bayard, B., Chatelon, J.P., Le Berre, M., Joisten, H., Rousseau, J.J., Barbier, D., Sensors & Actuators A 99, 207 (2002).Google Scholar
14. Townsend, P. H., Barnett, D. M., Brunner, T. A., J. Appl. Phys. 62, 4438 (1987).Google Scholar
15. Kamins, T.I., Sensors & actuators A 23, 817 (1990).Google Scholar
16. Czewska, A., Dubzynski, J., Thin solid films 113, 271 (1984).Google Scholar
17. Pankhurst, Q.A., J. Phys. Condens. Matter. 3, 1323 (1991).Google Scholar
18. Capraro, S., Chatelon, J.P., Joisten, H., Le Berre, M., Bayard, B., Barbier, D., Rousseau, J.J., J. Appl. Phys. 93, 9898 (2003).Google Scholar
19. Bayard, B., PhD Thesis, Univeristy of Saint Etienne, France (2000).Google Scholar